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Abstract. Drought indices based on precipitation are com-
monly used to identify and characterize droughts. Due to the
general complexity of droughts, the comparison of index-
identified events with droughts at different levels of the com-
plete system, including soil humidity or river discharges, re-
lies typically on model simulations of the latter, entailing po-
tentially significant uncertainties.

The present study explores the potential of using
precipitation-based indices to reproduce observed droughts
in the lower part of the Jinsha River basin (JRB), proposing
an innovative approach for a catchment-wide drought detec-
tion and characterization. Two indicators, namely the Over-
all Drought Extension (ODE) and the Overall Drought In-
dicator (ODI), have been defined. These indicators aim at
identifying and characterizing drought events on the basin
scale, using results from four meteorological drought indices
(standardized precipitation index, SPI; rainfall anomaly in-
dex, RAI; percent of normal precipitation, PN; deciles, DEC)
calculated at different locations of the basin and for differ-
ent timescales. Collected historical information on drought
events is used to contrast results obtained with the indicators.

This method has been successfully applied to the lower
Jinsha River basin in China, a region prone to frequent and
severe droughts. Historical drought events that occurred from
1960 to 2014 have been compiled and cataloged from differ-
ent sources, in a challenging process. The analysis of the in-

dicators shows a good agreement with the recorded historical
drought events on the basin scale. It has been found that the
timescale that best reproduces observed events across all the
indices is the 6-month timescale.

1 Introduction

Drought is a natural phenomenon that results from persistent
deficiency of precipitations over an extended period of time
compared with some long-term average condition (e.g., pre-
cipitation), resulting in a water shortage for some activity,
group, or environmental sector (Landsberg, 1982). It gener-
ally affects larger areas than other hazards and more people
than any other natural catastrophe (Keyantash and Dracup,
2002; Wilhite, 2000).

In China, droughts represent the most severe natural threat
for socioeconomic development and ecosystems (Mei and
Yang, 2014). Drought events occur in the Jinsha River basin
(JRB) and surrounding regions with high frequency. They af-
fect a wide range of areas and cause huge losses to the agri-
culture sector (He et al., 2013). The clustering of severe and
sustained droughts in southwest China during the last decade
has resulted in tremendous losses, including crop failure, lack
of drinking water, ecosystem degradation, health problems
and even deaths (Wang et al., 2015).
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To reduce and anticipate such drought impacts, a compre-
hensive characterization of the phenomenon is essential. Ef-
fective and accurate analysis of hydrometeorological data is
a key input. Drought indices are useful for tracking droughts
and providing a quantitative assessment of the severity, loca-
tion, timing and duration of such events (World Meteorolog-
ical Organization and Global Water Partnership, 2016), but
also for real-time monitoring (Niemeyer, 2008), risk analy-
sis (Hayes et al., 2004) and drought early warning (Kogan,
2000).

Some organizations and agencies already rely on the use
of indices in their decision-making processes, thus enhanc-
ing proactive drought management policies (Wilhite, 2000).
An example is the U.S. Drought Monitor (USDM, 2017),
an index-based drought map that policymakers use in dis-
cussions of drought and in allocating drought relief. Other
platforms such as the European Drought Observatory (Joint
Research Centre, 2017); China’s Department of Climate
Change, National Development and Reform Commission
(Department of Climate Change, National Development and
Reform Commission, 2017); or the experimental African
Flood and Drought Monitor (Land Surface Hydrology Group
– Princeton University, 2017) also use this approach for the
assessment, diagnosing and forecasting of droughts.

The choice of index should be based on the type of drought
(meteorological, agricultural, hydrological or socioeconomi-
cal), the climate regime and the regions affected, as well as
the available data. It was found that measured meteorological
data were limited in the study region and that precipitation
was the single most reliable type of exploitable information.
The present study thus focuses on the use of meteorological
indices based only on precipitation data. The main advan-
tages are their ease of use, the limited data requirements and
the capacity for early detection of drought events, while ex-
tensive literature and calculation tools are widely accessible
(World Meteorological Organization and Global Water Part-
nership, 2016).

The use of integrated indices such as the Palmer
drought severity index (PDSI; Palmer, 1965) or standard-
ized precipitation–evapotranspiration index (SPEI; Vicente-
Serrano et al., 2010), relying also on potential evapotranspi-
ration (PET), could improve the scope and quality of this
study. However, no reliable information necessary to calcu-
late PET was accessible for the study region. Although ap-
proximations may be applied to estimate this variable, for
example, by only considering temperature data, some stud-
ies (Jeevananda Reddy, 1995; Shaw and Riha, 2011; Staage
et al., 2014) showed a high sensitivity of the PET to the cho-
sen equation. A deeper analysis that helps in selecting and
applying such methods should be performed prior to the use
of these indices. Therefore, it has been decided to base this
study on the standardized precipitation index (SPI, McKee et
al., 1993, 1995), the rainfall anomaly index (RAI, Van Rooy,
1965), the percent of normal precipitation (PN, Barua et al.,
2011) and the deciles index (DEC, Gibbs and Maher, 1967).

To fill the lack of specific drought-related information,
most studies assess the performance of drought indices
against results from hydrological soil water models (Hal-
watura et al., 2016; Hao and AghaKouchak, 2013; Tram-
bauer et al., 2014; Vasiliades et al., 2011; Wanders et al.,
2010). However, the performance of these types of studies
depends on the accuracy of the models. Their limitations and
uncertainties represent an important drawback and should be
addressed (Mishra and Singh, 2011). An alternative that of-
ten requires more time-consuming work is the compilation of
historical records of drought events from different sources.
Consequently, their duration, the water scarcity levels, and
the drought impacts on population and agriculture can be es-
timated and then integrated into the analysis. This enables
one to identify other types of droughts such as socioeconom-
ical droughts that are hard to assess with hydrological mod-
els.

Regarding their spatial resolution, the available drought
indices may be based on local measurements (Zhou et al.,
2012) and index calculations are usually applied to stations
or cells of gridded precipitation datasets; overall spatial pat-
terns on catchment or sub-catchment scales are thus hardly
captured. As stated above, droughts affect large areas whose
limits are often vaguely demarcated. In addition, water re-
sources are part of a more complex interrelated network
which links the source to the point of consumption, where
isolated rainfall deficiencies do not necessarily imply a short-
age of water availability or even a drought event. Some work
(Bhalme and Mooley, 1980; Fleig et al., 2011; Mitchell et al.,
1979) suggests the use of drought area indices for the study
of droughts that considers areal coverage. The use of over-
all indicators capable of capturing in a single value the effect
of the rainfall deficiency at a regional level is thus conve-
nient and will be applied in this study based on the above-
mentioned work.

The objective of this study is to capitalize on the collection
of drought events that the authors have registered in the lower
part of the JRB since 1960 to evaluate and calibrate two in-
dicators capable of identifying drought occurrence and char-
acterizing their intensity on the catchment scale. These indi-
cators are based on commonly used meteorological drought
indices for particular timescales.

2 Investigation area and data

The JRB is a sensitive zone in terms of water resources,
food security, ecosystem management and human well-being
where glacier and climatic variability greatly influence the
water regimes and availability. Originating from the south-
ern glacier at Jianggendiru peak, the highest point of the
Geladaindong snowy mountain in the middle of the Tanggula
Mountains, the JRB, constitutes the upper part of the Yangtze
River basin. It is located between 24◦28′ and 35◦46′ N
longitude and between 90◦23′ and 104◦37′ E latitude in
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Figure 1. (a) Location of the JRB in China; (b) subdivision of the
JRB for this study; (c) overview of the lower JRB with the location
of the 29 meteorological stations.

southwestern China, with a catchment area of 473 200 km2

(Fig. 1). The total length of the river is 3500 km from Yibin
city, with a total fall of 5100 m. This part of the Yangtze River
accounts for 55.5 % of its length and 95 % of its total fall.

The lower part of JRB is a hot–dry valley region character-
ized by a southwest monsoon climate. The hydrologic regime
is characterized by a pronounced seasonal cycle with an an-
nual average precipitation of 600–800 mm yr−1. Dry season
(November to April) precipitation accounts for 10 to 22 % of
the annual precipitation. Evaporation is 10 to 20 times that of
precipitation during the dry season, which could be the ma-
jor reason for the frequent occurrence of winter drought or
winter–spring droughts in lower JRB (Mei and Yang, 2014;
Yang et al., 2013). However, the limited information avail-
able makes unapproachable the assessment of evapotranspi-
ration (ET) in the region for the study period. Thus, given the
role that ET can play in the annual moisture budget, results
should be addressed carefully.

Droughts occurring in the lower JRB and surrounding ar-
eas affect a wide range of areas, causing huge losses in agri-
culture (Wu et al., 2011): more than 4 million people and
3 million livestock face a drinking water shortage, and more
than 1 million hm2 of cultivated area is susceptible to severe
droughts and water shortages, with expected direct economic
losses of hundreds of millions of US dollars (Wu, 1999).

Figure 1 shows the division of the JRB in three parts
(upper, middle and lower) and the locations of the meteo-
rological stations used. This study focuses on the analysis
of drought events in the lower JRB. The precipitation data
needed in this study have been obtained from the China Me-
teorological Data Service Center (CMA) and downloaded
from its data sharing service system (CMDC, 2017). A pre-
liminary quality check and correction of datasets (includ-
ing data gap filling) is performed by CMA before upload-
ing them to the system. The monthly precipitation data of 29
meteorological stations within or around JRB, recorded from
1960 to 2014, have been collected and processed. More than

50 years of continuous data are thus available, except for the
Batang and Yuanmou stations where only 46 years are avail-
able. The spatial distribution of the stations is assumed to be
adequate for the purposes of the study: the stations are dis-
tributed relatively evenly both in the zonal and meridional
directions, with no zones having a significantly denser pres-
ence of stations that could overestimate their importance.

3 Catalog of historical droughts

In order to obtain a good basis for the evaluation of drought
indices’ performance, historical drought events have been
collected since 1960. The information required for the iden-
tification and characterization of major droughts in the lower
JRB has been compiled from different sources, including
scientific literature, inventories (e.g., international disaster
database, Chinese inventories), governmental reports and
yearbooks, and newspaper and internet articles.

Detailed information is available for the major drought
events over the past 20 years. Before 1980, much less infor-
mation about droughts in the lower JRB is available. More-
over, detailed information prior to 1960 could not be found.

Compiling and harmonizing the information from these
different data sources was a challenge. The drought event de-
scriptions in the scientific literature often give an overview
about the entire event in a descriptive way without detailed
information about the affected area and damage. The liter-
ature often provides information about the meteorological
conditions and the duration of the event. Available informa-
tion from government reports and databases, in contrast, gen-
erally contain information with a high level of detail for a
specific county (e.g., affected areas in km2) but neither give
information about the entire affected area if the event affected
several counties nor about prevailing meteorological condi-
tions.

Information at very different levels of detail and various
contents were collected. As a first step, all available informa-
tion was registered in a database. For this purpose, a web-
based event registration platform and database (GEOTEST
AG, 2017) has been developed to provide a standardized
analytical framework with a quantitative description of the
drought characteristics. In particular, drought events since
2000 are all mentioned in a different source, which signifi-
cantly enhances the reliability of their existence and related
information. Most of the drought events before 2000 are doc-
umented in detail in He (2010), and some of these major dry
periods are also mentioned in scientific literature such as He
et al. (2016) and Wang et al. (2015). Even if the amount of
data and level of detail is lower for these older events, their
occurrence and temporal positioning can be assumed to be
reliable.

In a second step, the level of detail was harmonized for the
most relevant information and summarized in Table 1. This
catalog of the most relevant drought characteristics focuses
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on the affected area, the start date of the drought events, their
duration, their spatial and temporal distribution, their sever-
ity, and the impacts on the population and agriculture, includ-
ing damage and financial losses. The time of occurrence and
duration is given in seasonal units, the affected area is de-
scribed on a county scale, and the indicators and impacts are
summarized in a descriptive way, as better accuracy was not
feasible for all events.

In total, 13 major drought episodes have been registered
from 1960 until 2014. However, this dataset is probably not
complete, as non-documented events likely have occurred. A
clustering of severe and sustained droughts in the JRB has
been observed from 2009 to 2014. Another period with high
drought activity and severity can be detected between 1980
and 1990. Although the droughts identified from 2009 until
2014 were extremely serious, this was not the worst period
in the long term because the drought episodes that occurred
around 1940 were of similar intensity and duration (Wang
and Chen, 2012). The registered drought events are often
strongly correlated with low precipitation, but the analyses
also reveal that the registered droughts often occur during
periods with temperatures above average.

4 Meteorological drought indices

Four different commonly used meteorological drought in-
dices have been applied in this study: the standardized pre-
cipitation index, the rainfall anomaly index, the percent of
normal precipitation and the deciles index. Their definition
basically rests upon the comparison of precipitation values
with the normal value (the definition of “normality” may vary
from one index to another), resulting in a single number. This
allows characterizing drought conditions and thus facilitating
the index’s interpretation and use in strategic planning and
operational applications (Tigkas et al., 2013).

This comparison must be month or season specific. For
instance, for the index calculation of January 2000, the pre-
cipitation of this month should be compared to the normal
precipitation extracted taking into account only the Januar-
ies from a reference period. The same applies when cal-
culating the index for the time window January–February–
March 2000: the precipitation for these 3 months will be
compared to the sum of precipitation of all the groups of
January-February-March registered in the reference period.

4.1 Standardized precipitation index (SPI)

The widely used standardized precipitation index was for-
mulated by McKee et al. (1993, 1995) to quantify the pre-
cipitation deficit from long-term recording and for multiple
timescales.

The long-term record of precipitation values is fitted to
a probability distribution which is then transformed into a
standard normal distribution, of which mean and variance

are 0 and 1, respectively (Edwards and McKee, 1997). The
datasets are most commonly adjusted to the gamma func-
tion (McKee et al., 1993; Sönmez et al., 2005; Tsakiris et
al., 2007) although some studies show better adjustments to
other functions (Akbari et al., 2015).

A classification of drought conditions based on the SPI
values was established by McKee et al. (1993) to define
drought intensities and is presented in Table 2. Positive SPI
values indicate greater than normal precipitation, and nega-
tive values indicate lower than normal precipitation.

As mentioned earlier, the SPI was designed to quantify the
precipitation deficit for multiple timescales or moving time
windows (World Meteorological Organization, 2012). These
timescales reflect the drought impacts on different water re-
sources which are needed by decision makers:

– The 3-month SPI reflects short- and medium-term mois-
ture conditions and provides a seasonal estimation of
precipitation.

– The 6-month SPI indicates seasonal to medium-term
trends in precipitation and may be very effective in
showing the precipitation anomaly over distinct sea-
sons. Information from a 6-month SPI may also be asso-
ciated with anomalous streamflow and reservoir levels,
depending on the region and time of year.

– The 12-month up to 24-month SPI reflects long-term
precipitation patterns and is usually tied to streamflow,
reservoir levels and even groundwater levels on longer
timescales.

4.2 Rainfall anomaly index (RAI)

The rainfall anomaly index was developed by Van
Rooy (1965). The RAI indices are computed by comparing
the average precipitation over a given time window with the
mean of the 10 highest (for positive anomalies) and the 10
lowest (for negative anomalies) precipitation records. De-
spite its simplicity, this index requires a series of complete
data to be calculated.

The RAI values are classified (Van Rooy, 1965) as shown
in Table 3. Olukayode Oladipo (1985) found that differences
between the RAI and the more complicated indices of the
Palmer drought index (Palmer, 1965) and Bhalme and Moo-
ley drought index (Bhalme and Mooley, 1980) were negligi-
ble.

4.3 Percent of normal precipitation (PN)

The percent of normal precipitation is one of the simplest
measurements of precipitation value for a location. It is cal-
culated by dividing precipitation during a given time win-
dow by normal precipitation of that same time window over
the reference period (typically considered to be a 30-year av-
erage). For PN values over 100 %, the precipitation is higher
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Table 1. Catalog of historical drought collected for the lower JRB (DJF: December–January–February; MAM: March–April–May; JJA:
June–July–August; SON: September–October–November).

ID Year Seasons Affected area Reference Other indicators Impacts

I 1962–
1963

SON, DJF,
MAM, JJA

Yunnan, southern
part of Sichuan

He (2010) Precipitation deficit of 50 % from
November 1962 to April 1963.

Drinking water shortage for 900 000 people.
Impacts on 3700 km2 of agricultural land.

II 1978–
1979

DJF,
MAM, JJA

Yunnan Liu (2012) Impacts on 7000 km2 of agricultural land, poor
harvest and crop loss.

III 1981–
1982

DJF,
MAM, JJA

Sichuan, north-
ern Yunnan

He (2010) Drinking water shortage for 2 or 3 million peo-
ple and 2 million livestock.

IV 1987 Exact
duration
unknown

Mainly Yunnan Impacts on 6000 km2 of agricultural land, poor
harvest and crop loss.

V 1992 MAM, JJA,
SON

Yunnan, southern
Sichuan

He (2010) Maximum in precipitation deficit: 50–
80 %.

Drinking water shortage for 2 million people
and 1 million livestock. Impacts on 9300 km2

of agricultural land.

VI 1998–
1999

DJF, MAM Mainly Yunnan He (2010) Temperatures in Yunnan province 2–
3 ◦C higher than long-term average.
Dayao County: 150 days without rain.

8000 km2 of damaged agricultural area.

VII 2000–
2001

DJF, MAM Sichuan, Yunnan WCB (2001) Temperatures in Yunnan province 2–
3 ◦C higher than long-term average.
The cities of Dali, Baoshan, Dehong,
Chuxiong and Lincang have almost no
rainfall during the whole winter.

Drinking water shortage for 3 million people
and 2 million livestock. Impacts on 5800 km2

of agricultural land.

VIII 2005 MAM, JJA Large parts of
Yunnan

Yang et al. (2012), Liu
et al. (2007)

High temperatures; in April to early
June, the temperature is 1 ◦C above the
same historical period in most parts of
Yunnan province. Precipitation deficit
of 20–80 % in May–June. 56 days with-
out precipitation.

Drinking water shortage for 6 million people
and 4 million livestock. Impacts on 15 200 km2

of agricultural land and poor harvest.

IX 2009–
2010

SON, DJF,
MAM

Parts of Yunnan,
Sichuan and
Guizhou

Yang et al. (2012),
Wang et al. (2015)

Precipitation deficit.
119 days without precipitation.
Average temperature anomaly of plus
1 ◦C.

Drinking water shortage for 21 million peo-
ple and 11 million livestock. Impacts on
43 500 km2 of agricultural land and poor har-
vest.

X 2011 MAM, JJA,
SON

Large areas in
southwest China

Yang et al. (2012),
Wang et al. (2015)

Temperatures 0.4–1.1 ◦C higher than
normal. From June to September 2011,
persistent high-temperature weather
conditions. Precipitation deficit of
20–60 %.

Drinking water shortage for 12 million people
and 9 million livestock. Impacts on 19 000 km2

of agricultural land. Cargo shipping has been
suspended.

XI 2011–
2012

DJF, MAM Large areas in
southwest China

Wang et al. (2013) Precipitation deficit. Drinking water shortage for 2.4 million people
and 1.6 million livestock. Impacts on 6500 km2

of agricultural land.

XII 2012–
2013

Oct–Apr Southwest China Guha-Sapir et
al. (2017), Hu et
al. (2015)

From October to April, temperatures
are 0.5 ◦C higher than normal and in
February 2.5 ◦C higher than long-term
average. Jan–Feb: precipitation deficit
of 45–55 %.

More than 3 million people and about 2 mil-
lion large livestock had a drinking water short-
age with varying degrees. 323 small rivers and
331 small reservoirs dried up. 23 300 km2 of
agricultural area affected (whereof 15 500 km2

is forest).

XIII 2014 DJF, MAM Central
Yunnan and
south Sichuan

Duan et al. (2015) Spring temperatures 2–4 ◦C higher than
historic values in SW China. Spring
precipitation in central Yunnan and
south Sichuan province was 50–90 %
less than the average of the same period.

Drinking water shortage for 1.6 million people
in Yunnan province. 106 rivers and 76 reser-
voirs dried up. Affected area: 6080 km2.

than the average precipitation (and vice versa): the higher the
PN value, the wetter the considered month is.

The main advantage of this index is its simplicity and
transparency, which makes it practical to communicate
drought levels to the public (Keyantash and Dracup, 2002).
Analyses using PN are very effective when used for a single
region and/or a specific season.

Even if no threshold ranges have been widely established
in the technical literature for the PN, some studies (Barua et
al., 2011; Morid et al., 2006) propose a classification simi-
lar to the SPI. For this study, the classification proposed by
Barua et al. (2011) has been adopted (Table 4).
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Table 2. Classification of drought conditions according to the SPI
values.

SPI Classification

≥ 2.0 Extremely wet
1.5 to 1.99 Very wet
1.0 to 1.49 Moderately wet
−0.99 to 0.99 Near normal
−1.49 to −1.0 Moderately dry
−1.99 to −1.5 Severely dry
≤−2.0 Extremely dry

Table 3. Classification of the period according to the values of the
RAI.

RAI Classification

≥ 3.00 Extremely wet
2.00 to 2.99 Very wet
1.00 to 1.99 Moderately wet
0.50 to 0.99 Slightly wet
−0.49 to 0.49 Near normal
−0.99 to −0.50 Slightly dry
−1.99 to −1.00 Moderately dry
−2.99 to −2.00 Very dry
≤−3.00 Extremely dry

4.4 Deciles (DEC)

Another drought-monitoring technique consists in dividing
the monthly precipitation data into deciles. This method, de-
veloped by Gibbs and Maher (1967), was selected as the
meteorological measurement of drought for the Australian
Drought Watch System (Lee, 1979; Sivakumar et al., 2010)
because it is relatively simple to calculate and requires less
data and fewer assumptions than the Palmer drought sever-
ity index (Smith et al., 1993). The procedures have also been
adopted by the World Meteorological Organization to moni-
tor drought on a worldwide scale (World Meteorological Or-
ganization, 1985).

The threshold ranges of deciles used to classify drought
conditions are presented in Table 5 (Gibbs and Maher, 1967).

5 Approach for the identification of drought events on
the basin scale

An indicator (or indicators) capable of adequately character-
izing historical droughts must be able to capture the follow-
ing characteristics:

– The beginning and the end of the event, which defines
its duration.

– The drought intensity, derived from the index value.

– The geographical area affected by the drought.

Table 4. Classification of drought conditions according to the PN
values.

PN Classification

180 % or more of normal rainfall Extremely wet
161 to 180 % of normal rainfall Very wet
121 to 160 % of normal rainfall Moderately wet
81 to 120 % of normal rainfall Near normal
41 to 80 % of normal rainfall Moderately dry
21 to 40 % of normal rainfall Severely dry
20 % or less of normal rainfall Extremely dry

Table 5. Classification of drought conditions according to the values
of the deciles.

DEC Percent Classification

Deciles 1–2 Lowest 20 % Significantly below normal
Deciles 3–4 Next lowest 20 % Below normal
Deciles 5–6 Middle 20 % Near normal
Deciles 7–8 Next highest 20 % Above normal
Deciles 9–10 Highest 20 % Significantly above normal

The following guidelines specify the approach proposed in
this study to characterize drought events on the basin scale
based on precipitation data available at each station and how
to contrast these results with the cataloged historical events.

First, following the previous definitions (Sect. 4), precip-
itation data are used to calculate the four above-described
meteorological drought indices (SPI, PN, RAI and DEC) for
each station and for different timescales (1-, 3-, 6-, 12-, 24-
and 48-month timescales) using the 1951–2000 reference pe-
riod. Then, according to the criteria presented below, these
values are used to detect potential drought events at a given
station and at a given time.

In order to aggregate results from all stations of the
basin, two indicators are proposed in this study: the Over-
all Drought Extension (ODE) and Overall Drought Indicator
(ODI). The results of these indicators will then be contrasted
with historical recorded events to define the best combination
of the index and timescale used for the definition of the ODE
and ODI indicators.

5.1 Use of indices to detect droughts on the station scale

According to McKee et al. (1993), a drought event occurs at
the station level any time the SPI is continuously negative and
the SPI reaches a value of −1.0 or less, which corresponds
to a moderately dry condition (Table 2) or drier. The drought
begins when the SPI first falls below zero (mean of the nor-
malized precipitation) and ends with the positive value of SPI
following a value of −1.0 or less. The drought magnitude is
the positive sum of the SPI for each month during the drought
event. The intensity of a drought is defined as the magnitude
of this event divided by its duration.

Hydrol. Earth Syst. Sci., 22, 889–910, 2018 www.hydrol-earth-syst-sci.net/22/889/2018/
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Figure 2. Example of the SPI-6, SPI-12 and SPI-24 series at the Chuxiong station, indicating drought periods in orange (lower threshold in
red).

Figure 2 shows an example of the SPI-6, SPI-12 and SPI-
24 series calculated at the Chuxiong station. Drought periods
are colored in orange and the lower threshold that defines
their occurrence in red. The influence of the timescale on the
number and duration of detected droughts is clearly apparent.
It is worth noting that there are periods in Fig. 2 that identify
very short droughts (1 or 2 months long), which is due to the
identification criteria based on the index values.

In the present study, the above-mentioned principles used
to detect drought events based on the SPI classification (Mc-
Kee et al., 1993) have been standardized to be applicable to
the other three indices (PN, RAI and DEC) as follows:

– A drought event occurs any time the index is contin-
uously below its normal value and reaches the moder-
ately dry condition class.

– The drought is considered to begin when the index first
falls below its normal value.

– The drought ends when the index exceeds its normal
value.

Table 6 summarizes the thresholds for each index that spec-
ify the drought event’s start and end criteria, which corre-
spond, respectively, to the limit of the moderately dry class
and to the index normal value. Although the “normal value”
of DEC would be 50 % (which corresponds to the median of

Table 6. Values of the thresholds defining the start and the end of
the drought events for each index.

Index Start End
(moderately dry condition) (normal value)

SPI −1 0
RAI −1 0
PN 80 100
DEC 40 % 60 %

the precipitation records), in this study the drought end crite-
rion suggested for this index is 60 %, which is the limit be-
tween near- and above-normal conditions (Jain et al., 2015;
Tsakiris et al., 2007).

5.2 Identification of drought occurrence

When analyzing directly these meteorological indices, the re-
sults only concern each station’s surroundings without cap-
turing the patterns of neighboring areas. However, available
historical records refer to regional droughts characterized by
larger areas that cover several stations.

In order to consider the basin as a whole in the defini-
tion of drought occurrence, duration and intensity, the result-
ing indices must be consistently extended to the entire area
and then combined in overall indicators. For that purpose,
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a regular grid divides the lower JRB into a 400× 300 cells
raster (400 rows and 300 columns) adapted to the study re-
gion and the available information, which represents a reso-
lution of 1 cell / 3.2 km2. The chosen grid resolution must be
adapted to the data, the computational requirements and the
performance needs of each case. After trimming off the ar-
eas sticking out of the basin boundaries, the raster possesses
44 133 cells. Index values have been calculated at each grid
cell by applying the inverse distance weighting spatial inter-
polation from the values available at the stations.

For this study, we followed the approaches taken for the
definition of drought area indices (Bhalme and Mooley,
1980; Mitchell et al., 1979) and regional drought area indices
(Fleig et al., 2011). It is thus considered that a basin-wide
event is ongoing when a substantial part of the basin is un-
der drought conditions. It is therefore necessary to identify
the portion of the territory for which the calculated index in-
dicates a drought. An indicator to detect drought occurrence
on the basin scale has been set up based on the criteria de-
scribed above to identify an event considering the index val-
ues (Fig. 2).

Based on the interpolation of the index, drought events are
detected for each time step and at each grid cell of the de-
scribed raster. This allows us to define an indicator, named
here the Overall Drought Extension, expressed as the per-
centage of the lower JRB area suffering a drought. It is calcu-
lated as the number of cells indicating a drought at a precise
date (N_drought) divided by the total number of cells of the
raster (in this case, N_TOTAL= 44 133) as shown in Eq. (1):

ODE=
N_drought
N_TOTAL

· 100%. (1)

The ODE ranges from 0 % (when no drought is occurring at
any point of the basin) to 100 % (when the entire basin is
suffering an event). It highlights the coverage of a drought,
allowing a direct comparison between registered historical
information and calculated results. Moreover, it helps define
the temporal component of droughts as it states the begin-
ning and the end of an event. However, it does not take into
account its intensity.

5.3 Characterization of drought intensities

Regarding the intensity of the droughts, in this study a com-
plementary indicator is applied to integrate the intensities
computed at every grid cell. The Overall Drought Indicator
is defined as the average index value across the cells under
drought conditions at a precise date, as shown in Eq. (2):

ODI=

N_drought∑
i=1

(Indexi)

N_drought
. (2)

The ODI expresses the average severity in the drought-
affected part of the basin. It gives information about the me-
teorological stress level of the areas being effectively affected

by a drought. Moreover, this indicator may help complete
the collected historical records which include little informa-
tion on the magnitude of the events. From indications of Ta-
bles 2, 3, 4 and 5, lower values of this indicator denote drier
conditions. Undefined values occur when no cells are under
drought conditions.

Only cells under drought conditions have been considered
to define this indicator. If the ODI had been calculated as an
average value for the entire basin (as adopted for instance in
Trambauer et al., 2014) higher (or lower) indicator values in
a part of the basin may have compensated lower (or higher)
indicator values in the rest of the basin, yielding an overall
value close to normal precipitation. Therefore, the ODI must
always be used together with the ODE: whenever a drought
has been detected with the ODE, its overall intensity may be
assessed with the corresponding value of the ODI.

5.4 Evaluating indicator-based results with cataloged
historical events

In order to support the choice of an index and timescale com-
bination for the definition of the ODE and ODI, an assess-
ment of the quality of the forecasts performed with the differ-
ent variants is recommended. The hypothesis is that detected
drought events (i.e., the forecasts) correspond to the cases
when the ODE value exceeds a given threshold, which indi-
cates that a certain area is affected by an event. The temporal
coincidence of these forecasts has to be then contrasted with
the occurrence of recorded droughts (i.e., the observations).
As stated above, Fig. 2 shows that very short index-based
events risk being forecasted. In order to avoid an overesti-
mation of droughts, an additional 3-month criterion for be-
ginning and ending forecasted droughts was established: an
event will be effectively detected when the ODE value ex-
ceeds the threshold for at least 3 consecutive months.

For the matching between forecasts and observations, two
monthly series of events were created (one for the events de-
tected according to the ODE values and one for the histor-
ical events), where for each month either a “drought” or a
“no drought” condition is assigned. Different scores for con-
trasting this type of dichotomous forecasts (occurrence vs.
no occurrence) exist: the Peirce skill score, PSS (Hanssen
and Kuipers, 1965; Murphy and Daan, 1985; Peirce, 1884);
the Heidke skill score, HSS (Heidke, 1926); the Gilbert skill
score, GSS (Schaefer, 1990); or the odds ratio skill score,
ORSS (Stephenson, 2000). As recommended by Candogan
Yossef et al. (2012), the PSS is used in this study. For its cal-
culation, the miss rate (M) and the false alarm rate (F ) are
defined in Eqs. (3) and (4), respectively:

M =
c

a+ c
, (3)
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Table 7. Contingency table of the comparison between forecasts
and observations.

Observation

Drought No drought

Forecast Drought a (hit) b (false alarm)
No drought c (miss) d (correct rejection)

F =
b

b+ d
, (4)

where a, b, c and d represent the number of cases for each
possible forecast outcome, respectively (Table 7):

– hit: when one detected drought corresponds with an ob-
served drought;

– false alarm: when a drought appears during a month
where no observed event has occurred;

– miss: when, during a month where a drought has been
observed, no event has been detected;

– correct rejection: when, during a month where no
drought has been observed, no drought is detected.

The miss rate (M) indicates how many of the observed
events are not forecasted (related to the Type 1 errors) while
the false alarm rate (F ) is the proportion of non-occurrences
that are incorrectly forecasted (Jolliffe and Stephenson,
2003). The PSS is expressed as shown in Eq. (5):

PSS= 1−M −F. (5)

The PSS ranges from −1 to +1: perfect forecasts receive a
score of one, random forecasts receive a score of zero and
negative values indicate less skill than a random prediction.
A suitable combination of the index and timescale will then
lead to higher PSS values.

However, high values of the PSS score may be obtained
purely by chance, especially when using only a small num-
ber of forecasts. Such is the case of the present work, where
only 13 independent events have been documented during the
55 years of record keeping. This could lead to overestimat-
ing the goodness of a combination of the index and timescale.
Therefore, sampling uncertainties must be addressed. A sta-
tistical test was applied to check if the calculated PSS values
were significantly different from zero, at least at a 95 % con-
fidence level. Assuming independence of the miss and false
alarm rates, the standard error in the Peirce skill score is sim-
ply the square root of the sum of the squared standard errors
in the miss and false alarm rates (Stephenson, 2000), as ex-
pressed in Eq. (6):

SEPSS =

√
(SEM)2

+ (SEF )2, (6)
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Figure 3. Extrapolated SPI-6 values in October 2012 for the entire
lower JRB.

where the standard errors in miss (SEM) or false alarm (SEF )

rates can be estimated by interpolating the values of the score
confidence interval discussed in Agresti and Coull (1998) (cf.
Table 8), as suggested by Thornes and Stephenson (2001). If
the PSS± 1.96·SEPSS interval does not include zero, then the
null of a random forecast can be rejected at a 95 % confidence
level.

6 Results and discussion

Following the previous approach, the series of the SPI,
PN, RAI and DEC indices were calculated for different
timescales (1-, 3-, 6-, 12-, 24- and 48-month timescales)
within the period of 1960–2014. First computed at the 29
stations, these indices were then extrapolated to the rest of
the lower JRB. Figure 3 shows the example of the standard-
ized precipitation index for a 6-month timescale (SPI-6) cal-
culated in October 2012 (corresponding to the drought event
XII) and spatially distributed at the lower JRB, where brown
colors represent regions under drier conditions.

According to the criteria proposed in Table 6, detected
drought events were identified based on the index values.
Then, the ODE and ODI indicators were calculated for the
lower JRB. An example of the resulting ODE and ODI se-
ries is shown in Fig. 4 for the SPI-6 and RAI-6 combinations
and in Appendix A for all the timescales and indices ana-
lyzed, along with the recorded historical droughts shaded in
orange.

The objective is to establish a combination of timescale
and index that offers an optimum identification of historical
droughts. As stated before, the main criteria used to contrast
the performance of the forecasts is that a drought event is
supposed to happen when the ODE value exceeds a thresh-
old that is to be defined. The combination finally retained
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Table 8. Standard error in estimated miss or false alarm rate calculated using the 95 % score confidence interval as discussed in Agresti and
Coull (1998).

Events Estimated miss or false alarm rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5 0.111 0.134 0.15 0.16 0.166 0.168 0.166 0.16 0.15 0.134 0.111
10 0.071 0.099 0.116 0.126 0.132 0.134 0.132 0.126 0.116 0.099 0.071
20 0.041 0.07 0.086 0.095 0.101 0.102 0.101 0.095 0.086 0.07 0.041
30 0.029 0.057 0.071 0.08 0.084 0.086 0.084 0.08 0.071 0.057 0.029
40 0.022 0.049 0.062 0.07 0.074 0.076 0.074 0.07 0.062 0.049 0.022
50 0.018 0.043 0.056 0.063 0.067 0.068 0.067 0.063 0.056 0.043 0.018
100 0.009 0.03 0.04 0.045 0.048 0.049 0.048 0.045 0.04 0.03 0.009
500 0.002 0.013 0.018 0.02 0.022 0.022 0.022 0.02 0.018 0.013 0.002
1000 0.001 0.01 0.013 0.014 0.015 0.016 0.015 0.014 0.013 0.01 0.001
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Figure 4. ODE and ODI values using the 6-month timescales of SPI and RAI indices, compared with the 13 detected historical droughts (in
orange).

should maximize the number of hits and minimize the misses
between the forecasts and the observed events.

The 1-month-scale overall indices show rapid fluctuations
that correspond to short periods of precipitation deficiency
not captured in the catalog of historical droughts. This is
mainly due to punctual, large rainfall events that have an
important influence in the indices, which may indicate that
the drought had ceased when it is not the case (Barua et
al., 2011). The use of this timescale is not recommended
for drought monitoring since long drought events are hardly
identified. The opposite effect occurs when using the 48-
month scale. The inertia of the rainfall shortage tendencies
may mask shorter droughts and overestimate their durations.
Since most of the episodes last 1 year or less (Table 1), they
are hardly detected using the 48-month scale. The droughts
which occurred from 2009 to 2014 (droughts IX to XIII) il-
lustrate this phenomenon: even if five different droughts have
been cataloged, a unique one is detected using the 48-month

scale, according to the ODE time series. Therefore, using the
1- and 48-month scales do not provide any substantial infor-
mation about the occurrence and duration of the droughts and
have been excluded from the performance analysis.

For the rest of the timescales (3-, 6-, 12- and 24-month
timescale), the ODE threshold indicating the occurrence of
a drought is required for the computing of the PSS that will
serve as a support for the selection of the best combination
of the index and timescale. Traditionally, cross-validation
techniques are used to define optimum thresholds, for when
within a training subset the threshold maximizing the PSS is
identified and validated in a non-overlapping validation sub-
set. However, the authors consider that the limited number of
13 independent events recorded represents an important lim-
itation to a robust and meaningful cross validation. Instead,
another approach was followed. A sensitivity analysis was
performed using the same threshold across all of the combi-
nations and exploring the effect of varying it in a reasonable
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Figure 5. Example of graphic representation of the PSS results for
an ODE threshold of 0.4, with the black error bars representing the
95 % confidence interval (±1.96 standard errors) when sampling
uncertainties are considered.

range (in this case, from 0.3 to 1 by 0.1 steps). The result-
ing PSS values are shown in Fig. B1 of Appendix B and an
example of PSS for an ODE threshold of 0.4 is presented in
Fig. 5. The black bars indicate the statistical error estimates
(confidence intervals) at 95 % confidence, due to sampling
uncertainties, assessed with the statistical significance test
described in Sect. 5.4, which allows indicating whether the
score is significantly different from zero.

According to the results, most of the PSS confidence in-
tervals do not include zero, disproving that skill scores could
have identified drought events by chance sampling fluctua-
tions. For some of the indices on the 24-month scale (e.g.,
RAI-24 for an ODE threshold= 0.7), results cannot assert
that skill scores are significantly different from zero and thus
these combinations should not be considered.

Attending to the PSS values (Fig. B1), results show a con-
sistent tendency across all ODE thresholds of higher PSS at
the 3- and the 6-month timescales. Moreover, there is no sin-
gle index that clearly produces better results. Indeed, based
on the PSS values and taking into account their uncertainty,
there are no statistically significant differences across the dif-
ferent indices for the 3- and 6-month timescales. This indi-
cates that, for these timescales, all the indices perform simi-
larly well in capturing the events, which is consistent with the
fact that they all rely on the same type of data (precipitation).
PSS results are independent of the specific threshold and thus
they are considered robust. However, it is worth mentioning
that, in general, higher PSS values for the 3- and the 6-month
timescales are produced using ODE thresholds between 0.4
and 0.6.

Regarding the 6-month ODE series (Figs. A5 and A6 of
Appendix A), it is important to highlight some relevant as-
pects:

– All the observed drought events have their correspond-
ing ODE peaks.

– Although event VIII has an estimated duration of
3 months, ODE and ODI results consistently show a
longer drought. The exact period of this drought is not
well defined as indicated in the catalog, leaving room
for a longer duration of the real episode.

– In general, all the indices are well correlated, identifying
most of the recorded droughts.

– Several droughts are consistently detected between
event I (1962) and II (1979) even if no drought has
been chronicled (false alarms). This may correspond to
the above-mentioned scarcity of reliable information on
droughts prior to 1980.

– The drought events IX, X, XI, XII and XIII are well
captured. As shown in Figs. A5 and A6, the different
events during this period (2009–2014) match with the
consecutive increases in the ODE values for all the in-
dices (DEC, PN, RAI, SPI).

– However, the 6-month series of ODE suggest some false
positive detections: more drought events than the ob-
served are calculated.

Regarding the 3-month ODE series (Figs. A3 and A4), re-
sults suggest an overestimation of the number of detected
events, as sometimes several detected events combine into
one (longer) observed event. The 6-month timescale appears
as more appropriate.

In summary, according to the ODE series presented in Ap-
pendix A and to the forecast verification carried out with
the Peirce skill score (Appendix B), it seems that the best
timescale for the identification of droughts is at 6-months.
Results show an equally effective performance of the ODE
series for all the indices. However, the risk of false positives
must be addressed carefully, as the observation record likely
misses events, in particular between 1962 and 1979.

Despite the good performance shown by the overall indi-
cator ODE in drought detection, caution is advised. In par-
ticular, the choice of meteorological indices as a basis for the
calculation of the ODE and ODI can lead to errors when as-
sessing drought occurrence. Temperature variability, not con-
sidered here, can play a significant role in the onset of agri-
cultural drought. Meteorological indices may not be fully ca-
pable of capturing the impacts on water scarcity and could
be complemented with other types of indices, such as agri-
cultural or hydrological. The same approach proposed in this
study is recommended using more comprehensive indices in
order to better capture the complex drought processes.

The performance assessment of the ODE indicator to de-
tect droughts relies basically on the comparison with the his-
torical events cataloged in this study. The search and compi-
lation of this information from different data sources, often
scarce and ambiguous, represents a challenge. Different in-
formation sources often provide only partial information for
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one episode, and for some events the differences in the avail-
able information complicate the harmonization of data. As a
result, the accuracy of the collected information may impact
on the applicability of the developed methodology.

7 Conclusions

This study aims at applying overall drought indicators repre-
senting the drought status within the entire lower JRB inves-
tigation area. This work represents an attempt at building a
tool for drought monitoring and risk management purposes
on the basin scale. It is based on established meteorological
indices for the identification of droughts and a method for
a catchment-wide drought assessment and characterization,
which is compared to historical drought events of the lower
JRB.

The information used for the identification and character-
ization of major historic droughts was compiled from differ-
ent sources. A total of 13 major droughts between 1960 and
2014 were identified in the lower JRB and cataloged using a
web-based registration platform, allowing for a comparison
of the different events.

Drought indices typically assess local water deficits while
available historical records usually refer to regional droughts.
To overcome this problem, two drought area indicators, the
Overall Drought Extension and the Overall Drought Indica-
tor, have been used to characterize the occurrence and inten-
sity of an event within a specific investigation area. These
indicators are based on four common meteorological indices
on different timescales: the standardized precipitation index,
the rainfall anomaly index, the percent of normal precipita-
tion and the deciles index. By relying exclusively on pre-
cipitation, the proposed procedure serves as a basis for fur-
ther studies in other regions where only precipitation data are
available.

The performance of the ODE in drought detection has
been assessed by contrasting the results of this indicator
with historical recorded events, offering promising results. It
seems that the best results are independent of the index used
and produced using the 6-month timescale. Although results
suggest the same patterns for all ODE thresholds, it has been
noticed that the highest PSS values are produced for thresh-
olds between 0.4 and 0.6, which can be defined as a trigger
to detect the occurrence of a drought in the lower JRB.

Considering the challenge that the compilation of histor-
ical drought information represents and the identified limi-
tations, this is a good method for the monitoring of drought
episodes within an entire catchment. The use and contrast
of drought indicators on the basin scale with historical col-
lected information represent the main innovative aspects of
this study. Since meteorological droughts are the first stage
in the progression of subsequent agricultural or hydrological
droughts, this methodology could be used to activate a man-
agement response for a drought event, which starts at a spe-
cific threshold value. Additionally, this methodology can be
used to complete lacking information on droughts’ duration,
geographical extension or intensity.

Data availability. Precipitation data analyzed in the current study
are available from the China Meteorological Data Service Cen-
ter (CMA) and can be downloaded from its data sharing service
system (http://data.cma.cn/en, CMDC, 2017).
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Appendix A: Series of ODE and ODI indicators

The series of the Overall Drought Extension and the Overall
Drought Indicator have been calculated for the 1-, 3-, 6-, 24
and 48-month timescales. Graphic results are presented in
Figs. A1 to A12 below.
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Figure A1. ODE and ODI values using the 1-month timescales of SPI and RAI indices, compared with the 13 detected historical droughts
(in orange).
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Figure A2. ODE and ODI values using the 1-month timescales of DEC and PN indices, compared with the 13 detected historical droughts
(in orange).
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Figure A3. ODE and ODI values using the 3-month timescales of SPI and RAI indices, compared with the 13 detected historical droughts
(in orange).
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Figure A4. ODE and ODI values using the 3-month timescales of DEC and PN indices, compared with the 13 detected historical droughts
(in orange).
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Figure A5. ODE and ODI values using the 6-month timescales of SPI and RAI indices, compared with the 13 detected historical droughts
(in orange).
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Figure A6. ODE and ODI values using the 6-month timescales of DEC and PN indices, compared with the 13 detected historical droughts
(in orange).
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Figure A7. ODE and ODI values using the 12-month timescales of SPI and RAI indices, compared with the 13 detected historical droughts
(in orange).
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Figure A8. ODE and ODI values using the 12-month timescales of DEC and PN indices, compared with the 13 detected historical droughts
(in orange).
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Figure A9. ODE and ODI values using the 24-month timescales of SPI and RAI indices, compared with the 13 detected historical droughts
(in orange).
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Figure A10. ODE and ODI values using the 24-month timescales of DEC and PN indices, compared with the 13 detected historical droughts
(in orange).
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Figure A11. ODE and ODI values using the 48-month timescales of SPI and RAI indices, compared with the 13 detected historical droughts
(in orange).
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Figure A12. ODE and ODI values using the 48-month timescales of DEC and PN indices, compared with the 13 detected historical droughts
(in orange).
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Appendix B: PSS results
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Figure B1. Graphical PSS results for different index and timescale combinations, for a range of ODE thresholds between 0.3 and 1. The
black error bars represent the 95 % confidence interval.
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