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A B S T R A C T

Increasing meteorological data availability and quality implies an adaptation of the interpolation methods for
data combination. In this paper, we propose a new method to efficiently combine weather radar data with data
from two heated rain gauge networks of different quality. The two networks being non-collocated (no common
location between the two networks), pseudo cross-variograms are used to compute the linear model of cor-
egionalization for kriging computation. This allows considering the two networks independently in a co-kriging
approach. The methodology is applied to the Upper Rhône River basin, an Alpine catchment in Switzerland with
a complex topography and an area of about 5300 km2. The analysis explores the newly proposed Regression co-
kriging approach, in which two independent rain gauge networks are considered as primary and secondary
kriging variables. Regression co-kriging is compared to four other methods, including the commonly applied
Inverse distance weighting method used as baseline scenario. Incorporation of additional networks located
within and around the target region in the interpolation computation is also explored. The results firstly de-
monstrate the added value of the radar information as compared to using only ground stations. As compared to
Regression kriging using only the network of highest quality, the Regression co-kriging method using both
networks slightly increases the performance. A key outcome of the study is that Regression co-kriging performs
better than Inverse distance weighting even for the data availability scenario when the radar network was
providing lower quality radar data over the studied basin. The results and discussion underline that combining
meteorological information from different rain gauge networks with different equipments remains challenging
for operational purposes. Future research in this field should in particular focus on additional pre-processing of
the radar data to account for example for areas of low visibility of the weather radars due to the topography.

1. Introduction

In Switzerland, severe flooding events in recent decades have in-
creased the need for reliable forecasting systems to mitigate flood ef-
fects. In 1999, the research project MINERVE (Jordan, 2007a,b; Jordan
et al., 2010; Jordan et al., 2012; García Hernández et al., 2007, 2009;
García Hernández, 2011a,b; Bérod, 2013) was initiated with the ob-
jective of developing a flood forecasting and management system for
the Upper Rhône River basin upstream of Lake Geneva (Hingray et al.,
2010; Foehn et al., 2016). After the major flood of October 2000 in the
Canton of Valais (Switzerland), the need for such a system has increased
and since 2013, a forecasting system is operational for the entire basin
and used as a tool for decision-making tasks (García Hernández et al.,
2014).

Since the beginning of the forecasting system development, en-
hancing the estimation of the spatial precipitation distribution has been
identified as essential (Jordan, 2007a; García Hernández, 2011a; Tobin,
2012). Indeed, to accurately predict flooding induced by heavy pre-
cipitation, it is crucial to estimate with good accuracy the causative
precipitation (Sikorska and Seibert, 2018). Two main data sources are
usually considered: rain gauges (point observations) and weather radars
(spatial information). Combining these two data types has been shown
to produce improved precipitation estimates (Foehn et al., 2016; Sideris
et al., 2014a; Goudenhoofdt and Delobbe, 2009; Jewell and Gaussiat,
2015) for flood forecasting and hydrological modelling in general.

Rain gauges provide direct precipitation measurements which can
be fairly accurate; but point observations are heterogeneously dis-
tributed over the domain and typically do not cover the entire elevation
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range of Alpine basins. They are also subject to various sources of error
and uncertainty (Villarini and Krajewski, 2010; Cecinati et al., 2017a),
such as wind-induced measurement errors (Nešpor and Sevruk, 1999),
evaporation and wetting errors (Upton and Rahimi, 2003) or heating-
related losses for heated tipping-buckets (Savina et al., 2012). In ad-
dition, rain gauge values have to be considered to be spatially re-
presentative of their surrounding area, which is a strong hypothesis, in
particular for short-time scales (Ciach and Krajewski, 1999; Villarini
et al., 2008).

Weather radars, alternatively, provide a better spatial coverage but
require a relatively sophisticated post-treatment of the signal back-
scattered by the precipitation particles and are subject to significant
bias and many sources of error (Germann et al., 2006; Germann et al.,
2009; Berne and Krajewski, 2013). Radar estimates are in general well
correlated both in space and time with rain gauge data, particularly for
long accumulation periods but this correlation tends to decrease for
sub-hourly accumulation periods (Sideris et al., 2014a).

A wide range of precipitation interpolation methods has been pro-
posed in the literature for rain gauge data interpolation or radar-gauge
combination, from rather simplistic methods such as Thiessen polygons
(Thiessen, 1911) or Inverse distance weighting (Shepard, 1968) to more
sophisticated methods such as simple and multiple linear regressions
(Di Piazza et al., 2011), copulas (Vogl et al., 2012) and the wide range
of geostatistical methods (Creutin et al., 1988). Univariate geostatistical
methods (e.g. simple or ordinary kriging) generally tend to smooth the
interpolated variable and therefore struggle to accurately reproduce
spatial variability. Multivariate geostatistical methods use additional
spatial information from either static (e.g. elevation) or dynamic (e.g.
weather radar) covariates to improve the interpolation performance
(Wagner et al., 2012). Different approaches of multivariate geostatistics
applied to precipitations have been explored in the literature, including
Kriging with external drift (KED) (Cantet, 2017), Co-kriging (Goovaerts,
2000), Conditional merging (Ehret, 2003) or Bayesian kriging (Verdin
et al., 2015). Ly et al. (2013) propose a methods review for spatial
interpolation of daily rainfall data for hydrological modelling at the
catchment scale.

Regarding possible covariates (additional information), only few
studies really focused on multivariate interpolation of hourly pre-
cipitation over Alpine catchments. Schiemann et al. (2011) showed that
applying KED to hourly rain gauges and radar data over entire Swit-
zerland performs better than interpolated rain gauge data or radar data
alone. For flatter areas, Haberlandt (2007) has shown over the Elbe
basin, in Germany, that for hourly precipitation, the most important
additional information was the radar, followed by daily precipitation
observations of a denser network with lower temporal resolution, and
finally the elevation, which was considered “to play only a secondary
role” in the studied case. Goovaerts (2000) reported that incorporating
elevation can improve spatial interpolation of monthly and yearly
rainfall when applied to a basin in Southern Portugal. Ly et al. (2011)
analyzed the integration of elevation in KED and Ordinary Co-kriging
and concluded that it did not improve the interpolation accuracy for
daily rainfall over a basin in Belgium. These observations tend to agree
with Bárdossy and Pegram (2013), who found over three regions in
Germany that “correlation between precipitation and topography in-
creases with the length of time interval”. Sikorska and Seibert (2018)
showed that radar-based daily precipitation estimates, adjusted to
precipitation rates from ground stations, provided better flood predic-
tions as compared to using only rain gauges observations.

Sideris et al. (2014a) proposed a methodology applied in Switzer-
land in which rain gauges were combined with weather radar data
using data from the time step of interpolation as well as from the pre-
ceding time step (as secondary co-kriged variable) in a co-kriging with
external drift (CED) approach. Comparing their spatio-temporal method
with a classical KED approach, they concluded that the skill scores were
similar when considering an aggregation time of 60min. However, for
shorter aggregation periods (10–30min), CED resulted in higher

performance values than KED. This methodology is used for the com-
putation of the CombiPrecip product (MeteoSwiss, 2014a), the opera-
tional hourly spatialized precipitation product of the Swiss Federal
Office of Meteorology and Climatology (MeteoSwiss).

Numerical weather forecasts can also represent an alternative cov-
ariate. Tobin et al. (2011) have applied KED for interpolation of pre-
cipitation and temperature in Switzerland using (i) elevation and (ii)
the COSMO7 weather forecast product of MeteoSwiss (MeteoSwiss,
2017). Whereas temperature measurements were found to be “strongly
correlated with the closest COSMO7 grid point” at an hourly time step,
good correlation between measurements and COSMO7 estimates was
observed for precipitation only for “cumulative data over the event”.
Tobin et al. (2011) thus proposed to use an event averaged linear drift
for precipitation interpolation. Compared to Inverse distance weighting
(IDW) and Ordinary kriging (OK), KED with elevation tended to pro-
duce the least biased estimation in their study. In terms of error, OK and
both KED methods using elevation and the COSMO7 data had similar
scores and outperformed IDW. However, when looking only at stations
above 1500m asl., KED with COSMO7 showed the highest error for
their case study in Switzerland.

Covariates can also be processed before being used in combination
with rain gauge data. Berndt et al. (2014) showed that smoothing radar
data both spatially with the adjacent cells or/and temporally over
several time steps improved the performance of merging rain gauges
and radar data. Instead of always using the radar pixel containing a rain
gauge, Sideris et al. (2014b) incorporated in the CombiPrecip product a
convection control routine, in which the coefficient of dispersion over
the 25 pixels around the rain gauge pixel is computed. When a certain
threshold is exceeded, the value of the pixel with the closest value to
the rain gauge within the 25 pixels is used for the merging.

Commercial microwave link networks have also been explored over
the last decade as a supplementary source of precipitation data (Messer
et al., 2006). Hydrological applications show a great potential of this
approach, in particular in poorly equipped areas (Smiatek et al., 2017).

Besides providing a reliable radar-rain gauge combination for the
target region, the objective of this paper is to assess in detail what gain
can be expected from combining the most recent radar data for pre-
cipitation interpolation with rain gauge data from two ground-based
networks of different data quality. This includes a comparison to the
commonly used deterministic Inverse distance weighting method ap-
plied to rain gauge data as baseline scenario. Another key question is
the quality of the radar-gauge combination methodology if applied to
the data situation prevailing before the installation of a new weather
radar covering the studied basin in 2014. Using the data from the al-
ready existing other Swiss weather radars, such an application allows
computing series over a longer time period which is required for hy-
drological modelling purposes. Finally, the paper also aims at analyzing
the effect of incorporating additional station networks located within
and around the target region in the interpolation computation.

2. Study region and data

2.1. Hydrological basin

The studied area corresponds to the Upper Rhône river basin, de-
fined as the hydrological basin between the Rhône Glacier (on the east)
and Lake Geneva (on the west). The area is 5351 km2 (Fig. 1) and the
elevation varies from 372m asl. at the outlet to 4’634m asl. on the top
of the Dufourspitze, with a mean elevation of 2158m asl. (Fig. S.1 in
Supplementary material). The area above 3000m asl. represents 13.0%
of the area, whereas the part above 4000m asl. only covers 0.3% of the
total area. The glacierized area has been estimated to 569.2 km2 in
2010 (Fischer et al., 2015), which corresponds to about 10.6% of the
total area.

Yearly precipitation intensities are spatially variable over the basin.
The yearly average over the period 1981–2010 is of 603mm for the
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station Sion (SIO), at 482m asl. and located near the center of the basin
(Fig. 1), whereas the station at Col du Grand St-Bernard (GSB), on the
south-western border and situated at 2472m asl., reported an average
of 2368mm per year over the same period (MeteoSwiss, 2014b). Pre-
cipitation is observed all year long, with a monthly average minimum
and maximum of 35mm (April) to 64mm (December) for SIO and
135mm (July) to 248mm (November) for GSB. Depending on the
elevation, the solid precipitation fraction can represent a significant
proportion of the annual precipitation.

2.2. Rain gauges data within the basin

Several networks of rain gauges are available within the basin, but
only the two networks with heated rain gauges have been considered
for this study, in order to make the methodology applicable all year
round. The first one is the SwissMetNet (MeteoSwiss, 2016a) network of
MeteoSwiss, hereafter refereed as SMN. The SMN data are based on
reliable equipment and subject to a serious quality control (Musa et al.,
2003). On July 1st, 2013, 40 SMN stations were operational within the
basin. This number had increased to 58 on March 1st, 2017, which
represents an average area per station of 92 km2, which makes it a
particularly dense network. As a comparison, on the same date, the
Swiss average was 168 km2 per station and values reported by other
authors tend to be higher: about 571 km2 per station in Germany
(Berndt et al., 2014) or 135 km2 in the Wallon region, where
Goudenhoofdt and Delobbe (2009) described the network as “dense”. A
complete list of used SMN stations is given in Tables S.1 and S.2 (Supp.
Mat.).

For the analysis, all available stations have been considered in each
event, regardless whether the station was available or not for the other
events. This implies that the number of stations considered for the
computation increases over the events between 2012 and 2017. Table 1
lists the equipment used in the different networks (MeteoSwiss, 2015)
and the number of stations.

The second network is composed of 23 stations of the private
company MeteoGroup Switzerland AG, hereafter refereed as MG. More
stations of this network are available within the basin, but data from
only 23 stations were available for the present study, which have been
selected to supplement SMN stations over uncovered areas. A complete
list of used MG stations is given in Table S.3 (Supp. Mat.).

Combined with the SMN stations, the average area per station over
the basin drops to 66 km2. The elevation range is 381–2472m asl. for
the SMN stations and 460–2347m. asl for the MG stations, with median
elevations of respectively 1537 and 1365m. asl.

The analysis of the data has shown a tendency of MG stations to
report less precipitation than the SMN stations, with differences largely
exceeding 20% for some hourly time steps. Similar observations had
been made by MeteoSwiss when comparing their manual daily pre-
cipitation measurements with automatic observations from
MeteoGroup stations (J. Fisler, MeteoSwiss, personal communication,
January 9, 2017). In the field intercomparison of rain intensity gauges
realized by Vuerich et al. (2009) for the account of the World Me-
teorological Organization (WMO), all three concerned station types, or
their predecessor (for the OTT equipment), had been tested (Lanza and
Vuerich, 2009). The stations used by MeteoSwiss were evaluated as
“satisfactory” (Lambrecht) and “very good” (OTT), whereas the stations
installed by MeteoGroup (Davis) were evaluated as “insufficient”. Based
on these conclusions, the SMN stations have been defined for this study
as being the “primary” network and the MG stations as the “secondary”
network. This distinction will be considered when using data from both
networks. It is worth mentioning here that neither the MeteoSwiss nor
the MeteoGroup station data are corrected for undercatch of solid
precipitation, which is known to have an effect on solid precipitation
intensity estimation in mountainous regions (Egli et al., 2009).

2.3. Rain gauges data around the basin

In addition to the presented two networks located within the basin
(81 stations) and their 12 stations located around the basin (Table 1),
62 stations of networks located around the basin and equipped with
heated rain gauges have been considered (Table 1). This additional
information allows a better estimation at the border of the basin as well
as a more correct estimation of the precipitation fields for example in
the southern neigbhouring area. This is important as more than half of
the meteorological situations having produced more than 110mm/d of
precipitation over 3 days in the Upper Valais since 1975 have origi-
nated from souths according to Attinger and Fallot (2003), as cited in
Tobin et al. (2011).

Fig. 1. Location of the MeteoSwiss, MeteoGroup and
surrounding meteorological networks, as well as the
Pointe de la Plaine Morte weather radar and a se-
lection of hydrological stations. Abbreviations in-
dicate the MeteoSwiss stations Sion (SIO), Col du
Grand St-Bernard (GSB), Bex (BEX) and Ulrichen
(ULR) as well as the hydrological stations Sion (SIO)
and Porte du Scex (PDS). Glaciers and principal
rivers are also shown. (Topographic data source:
Swisstopo (2017a) for rivers and lakes, Swisstopo
(2013) for the glaciers (with modifications),
Swisstopo (2005) for the DEM, Swisstopo (2012) for
the relief and Swisstopo (2017b) for the national
boundary line).
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2.4. Weather radar data

MeteoSwiss has operated since 1995 three weather radars covering
the entire national territory of Switzerland (MeteoSwiss, 2016b),
modernized in 2011 and 2012 with new technologies (MeteoSwiss,
2012). In May 2014, a fourth installation has been inaugurated at the
Pointe de la Plaine Morte (see Fig. 1), within the basin studied in here
(MeteoSwiss, 2014c), followed two years later by a fifth radar in the
Eastern part of Switzerland (MeteoSwiss, 2016c) (Fig. S.2, Supp. Mat.).
The radar of Pointe de la Plaine Morte is officially operational since
June 2014. The two additional radars contributed to a better radar
coverage of Alpine regions (Germann et al., 2015). The back-scattered
signal measured by the five dual-polarization Doppler C-band radars
(Gabella, 2017) is transformed into rain rate estimates through several
procedures, described in Germann et al. (2006). Radar precipitation
estimates are generated every 5min over a 1-km resolution raster based
on a combination of the data of the available radars over Switzeraland.
For the present study, the hourly aggregated radar precipitation esti-
mates product of MeteoSwiss is used, classified into 256 categories. The
production routine of the product had been optimized by MeteoSwiss
for the configuration with 3 weather radars in Switzerland. A new radar
precipitation estimates product is generated by MeteoSwiss since Feb-
ruary 2018, but no historical data are yet available (MeteoSwiss, per-
sonal communication, March 7, 2018).

It is worth pointing out that the highly mountainous aspect of the
studied basin implies an accuracy loss of the radar estimate as com-
pared to flatlands (Erdin et al., 2012). Beam shielding by mountain
ranges is certainly one of the major issues, as discussed later in Section
5. To reduce this effect, a fixed adjustment map computed based on a
long-term comparison between weather radar estimation and rain
gauge measurements is used by MeteoSwiss in the computation of their
radar precipitation estimates product (Germann et al., 2006). However,
this long-term comparison-based correction does not consider the data
of the two newly installed radars. Positive effect on the basin of interest

is therefore probably lower than for some other regions of Switzerland.
Ground echoes elimination also requires a proper pre-treatment of the
data. In addition, radar data suffer of bias issue, by over- or under-
shooting the precipitation. This is why they are combined with rain
gauges to properly adjust the precipitation field. Furthermore, solid
precipitation estimation is known to be more challenging than the li-
quid phase, resulting in better detection performance in summer than in
winter (Speirs et al., 2017), whereas melting snow tends to enhance the
back-scattered signal (Germann et al., 2006).

2.5. Events description

The main analysis is carried out on four events that occurred over
the period of data availability for the meteorological radar of Pointe de
la Plaine Morte (2014–2017). Additionally, two events in 2012 and
2013, corresponding to the highest peak flow in the basin over the
2008–2017 period, as well as an event in July 2014 during which the
radar of Pointe de la Plaine Morte was temporary not operating, are also
considered to discuss the performance of the methodology before the
installation of the radar of Pointe de la Plaine Morte. This is important
as data over several years are necessary when using the interpolated
data for hydrological model calibration.

The four events considered for the main analysis cover different
seasons and were chosen for their high precipitation accumulation over
the events. The period for each event has been defined such as to start
two hours before the first hour with at least four SMN stations reporting
at least 1.5mm/h, and to stop two hours after the last hour respecting
this condition; interruptions of less than 12 h of the above mentioned
condition were considered to be part of the same event.

The characteristics of the events are given in Table 2 and presented
hereafter, listed in chronological order. The median and maximum
accumulation values are computed from the rain gauge values. The
snow line elevation has been estimated from archives of short term
weather forecasts of MeteoSwiss. In fact, even if recent developments

Table 1
List of considered rain gauge networks and respective characteristics. Number of stations for MeteoSwiss refers to March 1st , 2017.

Network Number of stations Location Sensor model Period

SwissMetNet (SMN) 17 (+9) Basin (+ neighbouring cantons) 1518 H3 and 15188 by Lambrecht (tipping bucket) 2012–2017
SwissMetNet (SMN) 41 (+2) Basin (+ neighbouring cantons) Pluvio2 by Ott (weighing principle) 2012–2017
MeteoGroup (MG) 23 (+1) Basin (+ France) Rain Collector II by Davis (tipping bucket) 2012–2017

Kanton Bern 11 Bern (Switzerland) Unknown (heated) 2012–2017
MeteoFrance 5 France Unknown (heated) 2012–2017
EDF 10 France Unknown (heated) 2012–2016
Regione Autonoma Valle d’Aosta 25 Italy Unknown (heated) 2012–2017
ARPA Piemonte 11 Italy Unknown (heated) 2012–2015

Table 2
Characteristics of the seven analyzed events.

Event identifier A B C 1 2 3 4

Year 2012 2013 2014 2014 2015 2016 2017
Start [day.month Time] 1.7 12:00 28.7 21:00 28.7 11:00 4.11 08:00 30.4 22:00 10.1 07:00 5.3 15:00
End [day.month Time] 2.7 16:00 29.7 17:00 29.7 15:00 6.11 04:00 4.5 10:00 13.1 04:00 7.3 13:00
Duration [h] 28 20 28 44 84 69 46
Season Summer Summer Summer Fall Spring Winter Winter
Approx. snow line elevation [m asl.] 3200–3400 2600 2500–3100 800–2000 1800–2600 800–1400 700–1400

Plaine Morte radar data No No No Yes Yes Yes Yes

Median accumulation at stations [mm] 24.3 39.3 45.5 37.5 96.2 41.2 34
Maximum accumulation at a station [mm] 65.3 69.7 62.7 179.5 375.7 158 150.7
SMN stations (number) 28 40 52 52 52 55 58
MG stations (number) 20 22 23 23 23 23 23

Qmax at Sion [m3/s] 703 708 394 146 231 64 53
Qmax at Porte du Scex [m3/s] 864 901 537 272 606 191 139

A. Foehn et al. Journal of Hydrology 563 (2018) 1092–1110

1095



enable hydrometeor type analysis from radar data (Grazioli et al.,
2015), snow line elevations cannot yet be estimated directly from the
radar data. Return periods are provided by MeteoSwiss (2016d) from
which only statistically robust results were considered. Peak discharges
(Qmax) and corresponding return periods of the events at the hydro-
metric stations of the Federal Office for the Environment (FOEN,
2017a,b) in Sion and in Porte du Scex, at the outlet of the basin (Fig. 1),
are also indicated in Table 2 and discussed hereafter where relevant. All
times are given in UTC+1.

2.5.1. Events without Pointe de la Plaine Morte data
Event A: 1.7.2012 12:00 to 2.7.2012 16:00.
The event of July 2012 mostly concerned the eastern part of the

basin. The overall precipitation was not particularly intense, with a
median accumulation over all the stations of 24.3 mm, but with a snow
line elevation reaching 3400m asl., most of the precipitation fell as
rain. This resulted in a peak discharge in the Rhône at Sion of 703m3/s
on 2 July (FOEN, 2017b), corresponding to an estimated return period
of 20 years according to FOEN (2017a).

Event B: 28.7.2013 21:00 to 29.7.2013 17:00.
The event of July 2013 touched the entire basin with locally intense

storms (median accumulation of 39.3mm). The high snow line eleva-
tion, situated at about 2600m asl., resulted in a high proportion of
rainfall, which led to a peak discharges of 708m3/s in Sion and 901m3/
s in Porte du Scex on 29 July (FOEN, 2017b). The return period of the
discharge in Sion was estimated to 21 years (FOEN, 2017a).

Event C: 28.7.2014 11:00 to 29.7.2014 15:00.
A westerly depression affected the entire basin and particularly its

western part. The median accumulation reached 45.5 mm over the
event. The snow line elevation varied between around 2500 and
3100m asl. Compared to the events in 2012 and 2013, the intense
precipitation was less concentrated in time, probably partially ex-
plaining why the resulting flow in downstream rivers did not reach
values as high as in 2012 and 2013 (see Table 2). The event has the
particularity of having taken place after the entry into service of the
radar of Pointe de la Plaine Morte, but with the mentioned radar not
being in operation over the event (temporary interruption). This offers
a station density close to the maximum density of 2017 with a radar
data configuration corresponding to the one of before 2014 (without
the radar of Pointe de la Plaine Morte), which is interesting for analysis
purposes.

2.5.2. Events including Pointe de la Plaine Morte data
Event 1: 4.11.2014 08:00 to 6.11.2014 04:00.
An active westerly disturbance with polar air resulted in heavy

precipitation mostly in the Eastern part of the basin. The median ac-
cumulation over the 44 h was 37.5 mm but station Ulrichen (Fig. 1)
reported for example 96.2mm over 16 h, corresponding to a return
period of 18 years according to MeteoSwiss (2016d). The snow limit
varied between 800 and 2000m asl.

Event 2: 30.04.2015 22:00 to 4.5.2015 10:00.
A heavy precipitation event coming from the west with air relatively

mild and very humid reached Switzerland, with successive precipitation
fronts. The snow limit varied between 1800 and 2600m asl. The
median accumulation was 96.2 mm for a maximum accumulation over
the 84 h of 375.7 mm (in station Clusanfe). In terms of return period,
the station Bex (Fig. 1), in the western part of the basin, reported a
rainfall accumulation of 100.9 mm over 3 days, corresponding to a re-
turn period of 58 years. Other stations within the basin reported accu-
mulation with return periods exceeding 10 years.

Event 3: 10.1.2016 07:00 to 13.1.2016 04:00.
A series of disturbances reached Switzerland from the west with

heavy snowfalls on the Alps, exceeding in some places 100 cm of fresh
snow over the 3 days. The snow limit varied between 800 and 1400m
asl and the median liquid-equivalent precipitation was 41.2 mm.

Event 4: 5.3.2017 15:00 to 7.3.2017 13:00.

Strong westerly winds resulted in successive fronts towards the
Swiss Alps, with a median precipitation of 34mm. The snow limit
varied between 700 and 1400m asl. over the event, thus a large frac-
tion of the precipitation fell as snow.

3. Methodology

The high spatial variability of precipitation implies the use of
methods capable of analyzing and reproducing as reliably as possible
the spatial pattern of the precipitation fields. On one side, the inter-
polation method should be efficient in combining the available rain
gauge and radar data, considering different networks of ground sta-
tions. On the other side, for being used operationally, it should not
imply long computational time and must work on an automatic basis.

3.1. Estimation methods

Five different estimation methods are compared within this work,
ranging from commonly used methods to the newly proposed one
handling with two non-collocated rain gauge networks of varying
quality. The first method is the so-called Inverse distance weighting
method (Shepard, 1968), hereafter referred to as IDW, currently used
within the MINERVE forecasting system and therefore considered as the
baseline scenario. This method only uses the rain gauge data. The
second method considers directly the raw radar value over the entire
basin. The three other methods combine rain gauge and radar data by
applying a multiplying coefficient to the radar raster, based on a linear
regression of the radar data on the rain gauge data, to obtain a trend
(“corrected radar”). Residuals, defined as the difference between the
value observed at a rain gauge and the value of the containing pixel of
the trend, are then computed at each gauge location before being in-
terpolated. The way this interpolation is carried out differentiates the
three last methods. The first one is applying IDW to the residuals,
whereas the two others are based on a kriging approach (Webster and
Oliver, 2007; Delhomme, 1978). Finally, interpolated residuals are
added to the trend to get the final product. Table 3 summarizes the five
methods.

The implementation has been done on the R language and en-
vironment for statistical computing (R Core Team, 2016). For the three
regression methods, the methodology and nomenclature is partly based
on Sideris et al. (2014a).

3.1.1. Inverse distance weighting (IDW)
The Inverse distance weighting method (Shepard, 1968) is a de-

terministic interpolation method (Ly et al., 2013), in the sense that it
does not exploits the statistical properties of the observation sample,
thus not providing a prediction error assessment. In general, the aim of
interpolation is to estimate the precipitation depth p at an unsampled
spatial location s0 with coordinates (x y,0 0) using the available ob-
servation data at rain gauges (see Table 7 for variables list). IDW ap-
plies a linear combination of the observations within a research radius

Table 3
Estimation methods.

Name Short
name

Rain
gauges

Radar Remark

Inverse distance
weighting

IDW Yes No Reference

Radar value Radar No Yes Raw radar data
Regression inverse

distance weighting
RIDW Yes Yes IDW on residuals

Regression kriging RK Yes Yes Simple kriging on
residuals

Regression co-kriging RCK Yes Yes Co-kriging on
residuals
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ρ, with a decreasing influence with increasing distance. The rain gauge
measurements vector over a period t is given by:

= …g t g s t g s t g s t( ) [ ( , ), ( , ), , ( , )]N1 2 (1)

where N is the number of available rain gauge measurements over the
period t and =s x y( , ) the spatial-coordinate vector of a given point.

The estimated precipitation ̂p s t( , )0 , at a given location s0, is then
given by:

̂ =
⎧

⎨
⎩

∃ =

∀ > ⩽ ∀ ∊ ⊆∑

∑
=

=

p s t
g s t i d s s

i d s s ρ s D( , )
( , ) if : ( , ) 0

else : 0 ( , )
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i
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=λ
d s s

1
( , )i

i
β

0 (3)

with d being the distance between the location of interpolation and the
location of observation i, β a power coefficient, ρ the research radius
and D the spatial domain;  is the set of real numbers. The normal-
ization allows the sum of the weights to equal 1.

3.1.2. Radar value (Radar)
The Radar value method consists in using directly the raw radar

data as the precipitation estimation over the basin. The quality of the
raw radar product can thereby be investigated.

3.1.3. Regression inverse distance weighting (RIDW)
In the three remaining methods, from the geostatistical interpola-

tion methods, the radar information is used to compute a trend of the
precipitation field with a multiplicative coefficient. It is worth noting
here that merging rain gauge and radar data implies several hypotheses
(Sideris et al., 2014a). Firstly, it is assumed that for both the rain gauges
and the radar estimates, the measured physical quantity is the pre-
cipitation depth over spatial blocks of a size equal to the spatial re-
solution of the radar (1 km2). This ignores the difference in spatial re-
solution. In complex topographies like in the context of this study, this
can have implications due to the limited spatial representativeness of
rain gauges. Secondly, the precipitation estimates of the radar over a
spatial block of 1 km2 is assumed to reflect the precipitation depth
falling on the surface of the same block. This presumes perfect vertical
precipitation fluxes and no exchange with adjacent blocks, which is not
the case in reality. In addition, it must be noted that the precipitation
depth estimates given by the radar can be affected by areas of in-
visibility due to shielding of the radar beam by mountain ranges. This
obviously also impacts the performance of the interpolation.

In addition to the rain gauge measurements vector g t( ) defined in
the IDW method, the radar precipitation estimates at rain gauge loca-
tions over the period t are considered:

= …r t r s t r s t r s t( ) [ ( , ), ( , ), , ( , )]N1 2 (4)

During the interpolation, radar precipitation estimates at each in-
terpolation point are also used.

In geostatistics, a random process Z s t( , ) can be modeled as the sum
of a deterministic part m s t( , )Z , corresponding to the average or trend
component, and a stochastic residual component ∊ s t( , ), which corre-
sponds to local fluctuations of the trend, so that:

 = + ∊ ∀ ∊ ⊆ ∊ ⊆Z s t m s t s t s D t T( , ) ( , ) ( , ) ;z
2 (5)

where s is the vector of spatial coordinates of a given point and T the
temporal domain.

In the context of the present work, Eq. (5) can be rewritten for the
precipitation depth p over the entire domain as:

= + ∊p s t m s t s t( , ) ( , ) ( , )p (6)

The trend sm t( , )p for a spatial coordinates vector s is commonly
modeled as a linear function of a smoothly varying external variable
(Goovaerts, 1997). In our case, this external variable is the radar sr t( , ):

=s sm t a t r t( , ) ( ) ( , )p (7)

where a t( ) is a regression coefficient and sr t( , ) is the radar values
vector at time t. The coefficient a t( ) is computed as the slope of a linear
regression of all pairs of points composed of the gauge values on the y-
axis and the values of the containing radar pixel on the x-axis. a t( ) is
assumed to be constant spatially in the interest of robustness.

In other methods, such as Kriging with external drift (KED), the
trend is computed using two regression parameters (thereby adding
also an intercept) and often evaluated within the kriging estimation
process itself (e.g. in KED). The choice of a unique parameter has been
motivated by the wish of maintaining zero precipitation in the trend
where there was no precipitation reported by the radar estimates.

To compute the residuals ∊ s t( , ), the trend sm t( , )p is subtracted
from the observed value at the station locations:

∊ = − = −s s s s st g t m t g t a t r t( , ) ( , ) ( , ) ( , ) ( ) ( , )p (8)

The residuals ∊ s t( , ) are then interpolated using the inverse distance
weighting method to obtain the interpolated residuals ̂∊ s t( , )RIDW 0 at
location s0. The final estimate is obtained by adding the trend m s t( , )p 0
to the interpolated residual:

̂ ̂= + ∊ ∀ ∊ ⊆p s t m s t s t s D( , ) ( , ) ( , )pRIDW 0 0 RIDW 0 0
2 (9)

Fig. 2 illustrates the different steps of the RIDW method.

3.1.4. Regression kriging (RK)
Kriging is a family of interpolation methods in which the covariance

between observations is used to define a linear combination of the
observations for interpolation. Practically, kriging methods consider the
increasing dissimilarity between observations to characterize the spa-
tial structure of the data. One of the conditions to apply the elementary
methods of kriging, Simple and Ordinary kriging, is to assume the
random variable to be first-order stationary: the expected value is
constant over the domain of interpolation. This condition is hardly
satisfied when working directly with rain gauge data, as it might rain
for example only in one part of the basin. This non-stationarity of the
precipitation fields is here addressed by removing a trend based on the
radar data so that Simple or Ordinary kriging can be applied to the
computed residuals. This is however an approximation as the non-sta-
tionarity of the precipitation statistical properties cannot be fully cap-
tured by the radar data.

This approach is named Regression kriging (RK) in the present
paper, according to the nomenclature in Odeh et al. (1995). Other
names have been proposed for similar approaches in the literature:
kriging combined with linear regression (Ahmed and De Marsily, 1987),
kriging detrended data (Phillips et al., 1992), kriging with a trend model
(Goovaerts, 1997) or residual kriging (Alsamamra et al., 2009). Hengl
et al. (2007) discussed the characteristics of regression-kriging and ap-
plied the approach to three case studies. RK is somewhat similar to
Kriging with external drift (KED), the difference being that the linear
regression and the kriging interpolation is done in successive steps in
RK and all-at-once in KED. This choice of successive steps allows us to
define a subset of stations for (a) the linear regression step, (b) the
variogram computation for the spatial interpolation of the residuals and

Table 4
Summary of the performance indicators.

Indicator Min. value Max. value Optimal value

Bias −∞ ∞ 0
MAD 0 ∞ 0
RMSE 0 ∞ 0
MRTE 0 ∞ 0
Scatter 0 ∞ 0
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(c) the interpolation of the residuals, to explore for example a larger
number of stations in the last step.

Eqs. (5)–(8) about trend and residuals computation remain valid for
RK. The covariance of the residuals at the locations of observation is
given by the NxN covariance matrix Caa:

=

⎛

⎝

⎜
⎜
⎜

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎞

⎠

⎟
⎟
⎟

σ C C
C σ C

C C σ

C

Z N

Z N

N N Z

aa

2
12 1

21
2

2

2 2
2

(10)

where each element Cij of the matrix is given by the covariance between
the observation locations i and j and σZ

2 is the variance of the ob-
servations. Assuming a gaussian distribution of the residuals (discussed
later in Section 3.3) and considering a constant zero mean and known
variance, we use Simple kriging to spatialize the residuals. Considering
the two conditions imposed by the kriging approach which are (i) an
unbiased estimator and (ii) a minimal estimation variance, the fol-
lowing equation is obtained (Webster and Oliver, 2007):

=λC caa a (11)

where ca is the covariance vector between the locations of interpolation
and the observation locations.

Resolution of the system given in Eq. (11) provides the weights for
the linear kriging predictor used to compute residual values at the in-
terpolation location s0, given by the linear combination of the ob-
servations:

̂ ∑∊ = ∊
=

s t λ ts( , ) ( , )
i

N

iRK 0
1 (12)

which is then added to the trend m s t( , )p 0 to get the expected value of
the precipitation depth:

̂ ̂= + ∊p s t m s t s t( , ) ( , ) ( , )pRK 0 0 RK 0 (13)

∀ ∊ ⊆s D0
2

Interpolation of the residual is done using a global neighborhood,
that means all the points are used for the interpolation.

3.1.5. Regression co-kriging (RCK)
Based on the comparative analysis between the MeteoSwiss and

MeteoGroup networks (see Section 2), the choice was made to explore a
variant of Regression-kriging using co-kriging and hereafter referred to
as Regression co-kriging (RCK). Co-kriging has the advantage of of-
fering the possibility of considering more than one variable in the kri-
ging interpolation.

Thus, the multivariate RCK variant allows considering different
vectors of rain gauges. Instead of having only one vector of observa-
tions, vector g t( ) of Eq. (1) is replaced by two vectors:

= …g t g s t g s t g s t( ) [ ( , ), ( , ), , ( , )]a a a a N,1 ,2 , a (14)

= …g t g s t g s t g s t( ) [ ( , ), ( , ), , ( , )]b b b b N,1 ,2 , b (15)

where the subscripts a and b refer to the primary (a) and secondary (b)
networks and Na and Nb are the number of available rain gauges in
respectively the primary and the secondary networks over the period t.

Similarly, the radar precipitation estimates’ vector of Eq. (4) is re-
placed by two vectors:

= …r t r s t r s t r s t( ) [ ( , ), ( , ), , ( , )]a a a a N,1 ,2 , a (16)

= …r t r s t r s t r s t( ) [ ( , ), ( , ), , ( , )]b b b b N,1 ,2 , b (17)

Statements about the trend and residuals computation of Eqs.
(5)–(8) remain valid. The residuals are computed with the two equa-
tions:

Fig. 2. Illustration of the different steps in RIDW: (i) Raw radar data; (ii) Trend obtained by multiplying the raw radar data by the regression coefficient (Eq. (7)); (iii)
Residuals computed for each station and interpolated; (iv) Final product obtained by adding the trend (ii) and the interpolated residuals (iii). Circles represent rain
gauge locations and filling colour the precipitation intensity observed at the station. The black triangle represents the radar of Pointe de la Plaine Morte. (Time step:
01-05-2015 2200 UTC+1).

A. Foehn et al. Journal of Hydrology 563 (2018) 1092–1110

1098



∊ = −s s st g t a r t( , ) ( , ) ( , )a a aa a a a (18)

∊ = −s s st g t a r t( , ) ( , ) ( , )b b bb b b b (19)

where aa and ab are the multiplicative coefficients for the primary and
secondary variables computed with a linear regression of the radar data
on the rain gauge data. These two terms are the result of a linear re-
gression computed for each of the corresponding subsets of data with
respect to the corresponding radar data.

The consideration of two variables in RCK instead of one modifies
Eq. (11) as follows (Myers, 1982):

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
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= ( )λ
λ

C C
C C

c
c

a

b

aa ab

ba bb

a
b (20)

where ca and cb are the covariance vectors of residuals between the
unmonitored locations and the locations with observations and Cab
(respectively Cba) the cross-covariance matrix between the primary and
secondary variables (respectively the secondary and primary variables).
Consequently, the estimator equation is given by:
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i

N
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1
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(21)

before being added to the trend m s t( , )p 0 :

̂ ̂= + ∊ ∀ ∊ ⊆p s t m s t s t s D( , ) ( , ) ( , )pRCK 0 0 RCK 0 0
2 (22)

3.2. Variogram fitting for non-collocated networks

Computation of the weights vector λ of Eq. (11) as well as λa and λb
of Eq. (20) requires an estimate of the covariance matrices. Instead of
computing the covariance, which is sensitive to sampling effects, kri-
ging generally uses the concept of semivariogram (Matheron, 1971),
which represents how the dissimilarity between pairs of points in-
creases with increasing separation distance. The semivariogram, or
simply variogram as called from now, is defined for the univariate case
and expressed in terms of precipitation residuals by:

∑= ∊ −∊ + ∀ + ∊ ⊆

∊ − +
=

γ h
N h

s s h s s h D h

h b h b

( ) 1
2 ( )

( ( ) ( )) ( , ) |

[ /2, /2],

a
i

N h

i i i i i i i
1

( )
2 2

(23)

where h is the distance lag between pairs of locations, γ h( )a the vario-
gram value for distance lag h b, the bin size (the width of the distance
interval up to which point pairs are grouped for variogram computa-
tion), hi the distance separing a given pair of points, N h( ) the number
of considered pairs of observations separated by distance ∊h s, ( )a i the
residual value at location si and ∊ +s h( )i i the residual value at location

+s hi i (Pebesma, 2014).
In the case of Regression kriging, one variogram is computed with

Eq. (23) for each time step of computation. For the Regression co-kri-
ging, two direct variogams (one for each variable) and one cross-var-
iogram must be computed to define the so-called linear model of cor-
egionalization (Webster and Oliver, 2007). For the computation of the
cross-variogram, Eq. (23) must be generalized to two variables, iden-
tified by the subscript a and b:
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2 (24)

where ∊ s( )b i is the residual value at location si and ∊ +s h( )b i i the re-
sidual value at location si + hi.

However, Eq. (24) can be used only in case of collocated variables
(observations for both variables are available for a sufficient number of
given points). In the case of SMN and MG stations, this is not the case as

stations are situated in different locations. Accordingly, one needs to
work with so-called pseudo cross-variograms in which pairs of both
variables are considered, as proposed by Pebesma (2014):
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(25)

where ∗γ h( )ab is the pseudo cross-variogram value for distance lag h
considering variables a and b.

The equivalence between variogram and covariance is defined for
second-order stationary processes (for which the variogram is always
bounded), as follows (Webster and Oliver, 2007):

= −γ h C C h( ) (0) ( ) (26)

where γ h( ) is the variogram value for a distance h, C(0) is the covar-
iance at h=0 and C(h) the covariance at distance h. If the variogram is
bounded by a sill, the value of C(0) is equal to the total sill value.

In the present study, the variogram models have been fitted using
the package ‘gstat’ (Pebesma and Graeler, 2017), within the software R
(R Core Team, 2016). The empirical variogram has been fitted with a
spherical variogram model (Schuurmans et al., 2007):

=
⎧

⎨
⎪

⎩⎪

=

+ − < ⩽

+ >
( )γ h

h

K K h α

K K h α

( )

0 if 0,

if 0 ,

if .

h
α

h
α0

3
2 2

0

3
3

(27)

in which K0 is the nugget value, K the partial sill, α the range (distance
within which measures are considered correlated).

The implemented code explores different values of bin size until a
valid variogram model can be fitted. The routine also tries to obtain a
low nugget-to-sill ratio by gradually increasing a success threshold: 100
iterations are first attempted with a threshold value of 0.1. If none of
the obtained valid models has a nugget-to-sill ratio lower than the
threshold, the threshold is increased by 0.1 until 0.9 with each time 100
iterations. In case of failure with the highest threshold value, the last
valid variogram of previous time steps is considered.

Anisotropy of the variogram (different spatial variability in different
directions) has not been explored in this work. This choice is justified
by the use of the radar data, in which spatial variability of the pre-
cipitation fields is assumed to be contained and therefore considered in
the interpolation process.

3.3. Transformation

Precipitation is inherently heteroscedastic (the variance is not
constant over the domain) and has a skewed distribution, which is in
contradiction with basic assumptions of classical geostatistics which
assumes a gaussian distribution and stationarity of the mean and spatial
covariance (Erdin et al., 2012). Therefore, several methods have been
explored in the literature to transform the data before their interpola-
tion (Sideris et al., 2014a; Erdin et al., 2012; Schuurmans et al., 2007)
and it has been shown that quantitative improvements is dependent on
temporal and spatial variability (Cecinati et al., 2017b). The process of
applying kriging to data transformed into a more gaussian distribution
is generally named trans-gaussian kriging.

In the case of the two methods employing kriging in this paper,
namely regression kriging (RK) and regression co-kriging (RCK), in-
terpolation is not done directly on the precipitation observations but on
the residuals (see Section 3.1), to which the gaussianity issue therefore
applies. A transformation is applied to both the rain gauge and the
radar data to translate them into a more gaussian distribution, with the
objective of getting better gaussianity in the residuals. In this paper, we
use for both RK (3.1.4) and RCK (3.1.5) methods a square-root trans-
formation of the data (Sideris et al., 2014a). Analysis of the residuals
distribution has shown that this transformation tends to increase overall
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the gaussianity of the residuals, even though the effect is somewhat
limited and for few time steps even negative. In analysing the effect of
such data transformation on precipitation interpolation, Erdin et al.
(2012) reported “only small effects of transformation for the point es-
timates” but mentioned that “transformation improved the reliability of
the probabilistic estimates substantially”. The corresponding gain of
introducing such transformation scheme is disscussed in Section 4.2.2.

The advantage of the square-root transformation is the possibility of
analytical back-transformation of the mean and the variance (Sideris
et al., 2014a), given by:

= +Y μ σE[ ] Y Y
2 2 2 (28)

and,

= +Y μ σ σVar[ ] 4 2Y Y Y
2 2 2 4 (29)

where μY is the mean and σY the standard deviation of the square-root-
transformed kriging prediction at a certain location, whereas YE[ ]2

represents the expected value of the back-transformed random variable,
or, in other words, the final prediction, and YVar[ ]2 the related var-
iance. However, Eq. (28) is composed of two positive terms (both are
squared values) with the variance (σY

2) being positive and reaching the
sample variance of the (transformed) residuals at estimation locations
situated at a distance from the nearest observation higher than the
variogram model range (Eq. 27). Thereby, the back-transformed esti-
mation would never provide zero precipitation estimates apart from
rain gauge locations (where estimation variance is minimum). In the
work of Sideris et al. (2014a), this problem is addressed by correcting
the interpolated field and assigning zero precipitation to locations
where the radar does not show any precipitation (I. Sideris, personal
communication, May 30, 2017). The methodology proposed here
overcomes this issue by weighting the variance term of Eq. (28) with
the predicted precipitation:

=∗σ
μ
τ

σY
Y

Y
2

2
2

(30)

where τ is a precipitation intensity threshold below which the variance
is weighted and ∗σY

2 is the variance effectively added in Eq. (28) instead
of σY

2, which gives:

= +∗ ∗Y μ σE[ ] Y Y
2 2 2 (31)

where ∗YE[ ]2 represents the expected value of the back-transformed
random variable considering the modified estimation variance. The
value for τ has been fixed to 0.5mm/h after initial tests. The impact of
applying the transformation or not is discussed in Section 4.2.2.

3.4. Skill scores and cross-validation

The performance analysis is based on the leave-one-out approach:
the precipitation is estimated at a rain gauge location using all ob-
servations except the one corresponding to the interpolation location.
The procedure is undertaken on an hourly basis for each location and
for each of the methods. The quality of the point estimates is then as-
sessed over all locations for each time step using following skill scores:

1. Bias: Systematic errors are assessed with the bias indicator:

̂
≔

∑

∑
=

=

t
g t

g t
Bias( ) 10log

( )

( )
i
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i

i
N

i
10

1

1 (32)

where ̂g t( )i refers to the estimated value for a given location and a
given time step, g t( )i to the observed value and N to the number of
considered locations. As a result of the logarithmic scale used in Eq.
(32), the bias is expressed in decibel (dB). For each event, the
overall bias is averaged over the entire period and the entire spatial
extent. The bias has been computed only for hourly time steps
during which the mean precipitation over the MeteoSwiss stations

was higher than 0.5 mm/h. This avoids values at the denominator
close to 0, resulting in exaggeratedly high bias values.

2. MAD: The median absolute deviation (MAD), provides the median
of the absolute value of the difference between estimated and ob-
served values (Sideris et al., 2014a):

̂≔ −t g t g tMAD( ) median(| ( ) ( )|)i i (33)

3. RMSE: The Root mean square error is the most common parameter
used in verification (Goudenhoofdt and Delobbe, 2009). It re-
presents the standard deviation of the differences between predicted
and observed values:

̂∑
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g t g t
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i

N

i i
1

2

(34)

4. MRTE: The mean-root-transformed error (Erdin et al., 2012), miti-
gates the dominant influence of errors at large precipitation
amounts as compared to RMSE:

̂∑≔ −
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g t g tMRTE( ) 1 ( ( ) ( ) )
i

N

i i
1

2

(35)

5. Scatter: The scatter is a measure of the spread of the ratio between
estimated and measured values. It is based on the cumulative error
distribution function of these ratios, expressed in decibel (Germann
et al., 2006; Schiemann et al., 2011):

≔ −ξ ξScatter 1
2

( )84 16 (36)

where ξ16 and ξ84 represent the 16% and the 84% percentiles of the
cumulative error distribution function. Only pairs of points for
which both estimated and observed values where higher than
0.5mm/h were considered for the computation of the scatter.

3.5. Methodology application

For the IDWmethod, a value of 2 (common default value) is given to
the power coefficient β (Eq. 3) and the research radius is fixed to 50 km.
For the methods including a regression of the radar data, the regression
has been computed only on stations located within the basin.

For the methods considering a single rain gauge network (IDW,
RIDW and RK), the primary variable (SMN) data are considered. For the
RCK method, both primary (SMN) and secondary (MG) variables data
are used.

Variograms fitting with an insufficient number of points can lead to ill-
defined variogram. For the RK method, a minimum of 5 stations with a
precipitation of at least 0.5mm/h is set as condition. For the RCK method,
the condition is set to 5 stations exceeding the same precipitation
threshold value for each variable. When the condition is not satisfied, the
last previously computed valid variogram is used. The condition being
generally not satisfied at the beginning of an event, an initial variogram
must preliminarily be computed over an arbitrarily chosen time step
during the event with sufficient stations exceeding the threshold.

In addition, for both the RK and RCK methods, the model fitting has
been constrained to a maximum range of 50 km. This value has been
defined based on visual variogram analysis and allows to constrain the
model for experimental variograms that do not show a clear upper
bound.

4. Results

The five methods presented in Section 3 and listed in Table 5 have
been applied to the four events presented in Section 2.5.2. For all the
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five methods, the interpolation has been computed over a grid with a
resolution corresponding to the one of the raw radar data (1 km2 per
pixel).

For the cross-validation, the computation was based on the locations
of the SMN rain gauges within the basin, even if more stations such as
MG stations were used for the interpolation, to ensure a constant
comparison basis for all methods. It is worth noting here that no direct
comparison has been possible within this study with the CombiPrecip
product of MeteoSwiss, as no leave-one-out computation was possible
on the delivered CombiPrecip product.

The performance of the different methods is first discussed based on
the cross-validation approach, including a discussion of the perfor-
mance before the installation of the new weather radar in 2014. Results
of the variogram fitting and the effect of data transformation are then
presented. The last section discusses the effect of additional networks.

4.1. Methods performance analysis

In order to assess the performance of the different methods, the
presented performance indicators have been computed for the four
events 1 to 4 (Table 2). For each performance indicator (Table 4),
hourly values were averaged over each event. Results are given in
Fig. 3. The cumulative volume over the events, considering all the
pixels located within the basin, is also presented (dashed line border).

The estimation method considering only raw radar data (Radar)

clearly shows the weakest performance. Particularly in terms of bias,
which confirms the need of bias correction of the raw radar data with a
regression using rain gauges. This observation is strengthened by the
total volume that differs substantially from the other methods for part
of the events. Overall, the RCK method provides the best performance.
This is the case for the MRTE indicator for which the RCK method
provides the best value over all four events. In terms of absolute bias,
RCK outperforms for all the events the RK method but for some events,
other methods such as IDW perform better than RCK. Furthermore, the
results are not clear for all the indicators. For example for event 1,
RMSE and Scatter values are comparable for RCK and IDW. It is worth
to recall here that the station density within the basin is particularly
high, which allows IDW to reach already good performances. It must
also be pointed out that IDW has been applied with the default value of
2 for the exponent β of Eq. (2). Adjustment of this parameter could
improve the performance of the IDW method.

For a finer analysis, Fig. 4 presents hourly values for the four per-
formance indicators computed at each time step, for the reference IDW
method and the RCK method. Scatter is not shown here as it is com-
puted directly over the events. Results for the bias show how reactive
the indicator can be, with a strong negative value for the RCK method
on 2 May 2015 at 16:00. However, this corresponds to the beginning of
the second front and only few stations already observed precipitation,
in which case one single important cross-validation error can strongly
affect the hourly indicator value. It must also be noted that such single
negative (respectively positive) values can compensate for an overall
positive (respectively negative) bias value and lead to an improvement
in the overall value. This is one of the limitation of the bias indicator.

Regarding the three other indicators, all strictly positive by defini-
tion, it is interesting to note the varying difference between the two
methods over the three fronts: whereas there is only a small gain of RCK
over IDW over the first front, it increases over the second and third
front, in particular for the MRTE indicator. When analyzing the dif-
ferent fronts, it appears that over the third one, only the north-western
part of the basin is covered by the precipitation (Fig. 5). The gain of
integrating the radar information is here clearly visible, with the IDW

Table 5
Analyzed methods and corresponding used data. For methods abbreviations,
see Table 3.

Application Radar Primary variable Secondary variable

Radar Yes – –
IDW(SMN) No SMN –
RIDW(SMN) Yes SMN –
RK(SMN) Yes SMN –
RCK(SMN,MG) Yes SMN MG

Fig. 3. Event-averaged performance indicator values and cumulative volume over the entire basin (dashed line border) over the 4 events.
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method not being able to reproduce the sharp gradient cutting the basin
in two parts. Figs. S.5 to S.10 (Supp. Mat.) show the same indicators for
the 6 other events.

When analyzing the cross-validation errors of event 1, it appeared
that the station Col du Grand St-Bernard (GSB) resulted almost sys-
tematically (over the entire event) in high cross-validation errors, with
both IDW and RCK methods not being able to correctly reproduce the
observed precipitation, despite using the radar information in the RCK
method. When looking at the total precipitation over the event for both
methods, the GSB station is also very well visible at the south-western
corner of the basin (Fig. 6). The high difference between the rain gauge
values and the bias-corrected radar data only at this station suggested to
further investigate this particularity. Interestingly, this station, located
at an elevation of 2472m asl., had already been pointed out in a pre-
cedent analysis (Erdin et al., 2012), in which the station was reported to
suffer of “several known measurement problems (shielding, wind ex-
posure, and drifting snow)”. And with a snow limit varying between
1000 and 2000m asl. over the event 1, the GSB station only measured

solid precipitation.
To investigate the impact of the station over the global performance

over the event, the interpolation has been recomputed by totally ex-
cluding the GSB station. Fig. 7 shows the result for the two methods,
both with and without considering the GSB station. Results show that
all indicators are improved when removing the station. In particular for
RMSE and MRTE, the difference is non-negligible. This example shows
well how considering as truth the data from the rain gauges can lead to
incoherence or errors in the interpolation result.

The analysis carried out over events 1 to 4 considered radar data
including the new radar of Pointe de la Plaine Morte. In order to assess
the quality of the Swiss-wide radar product over the studied basin be-
fore the installation of this new radar, performances over the three
events A, B and C are presented in Fig. 8. The performance gain of RCK
over IDW for the three events is higher than for events 1 to 4. This is
probably partly explained by the number of rain gauges available over
the three events: only 28 and 40 SMN stations for 2012 (event A) and
2013 (event B) whereas at least 52 stations were available for the events

Fig. 4. Hourly values of performance indicators for IDW(SMN) and RCK(SMN,MG) over event 2 (May 2015).

Fig. 5. Hourly interpolated precipitation using (a) IDW(SMN) and (b) RCK(SMN,MG) on 04-05-2015 0100 UTC+1. Circles represent rain gauges’ locations and
filling colour the intensity observed at the station. The black triangle represents the radar of Pointe de la Plaine Morte.
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1 to 4. The lower station density reduces the performance of IDW and
thereby increases the relative gain of RCK over IDW.

The performance of the RCK method over the three analyzed events
excluding Pointe de la Plaine Morte radar data suggests that this
method provides clearly better results than IDW for the studied basin
even before the installation of the new weather radar. This is an im-
portant result in the perspective of computing precipitation fields for
hydrological modelling with data requirement over relatively long time
periods, as it shows that even with an Alpine topography like the one in
the studied basin, radar data seem to be usable even without a weather
radar located within the basin.

4.2. Variogram and data transformation analysis

Performance of the variogram model fitting for the results presented
in Section 4.1 are presented hereafter, before analyzing the effect of
data transformation looking at the RCK method.

4.2.1. Variogram fitting results
Good fitting of the variogram is essential to obtain a reliable in-

terpolation. The implemented solution resulted in few time steps (0.5%)
without valid variogram fitting. This considers only the time steps with
enough stations reporting sufficient precipitation as defined in Section
3.5. The percentage of time steps with insufficient stations is con-
siderably high: 7.4% for the RK method and 31.7% for the RCK method
of the time steps over the four events 1 to 4. These time steps generally
correspond to the lower intensity phase of the events. For all these time
steps (both failure and insufficient stations), the previously computed
last valid variogram was used instead.

Fig. 9 shows four direct variograms for the RK method over event 3.

The differences in bin size are well visible: the fewer points are visible
on a sample variogram, the more points were grouped together and
averaged to compute each point of the experimental variogram. Fig. 10
gives an example of the linear model of coregionalization, composed of
two direct variograms (SMN and MG) and one pseudo cross-variogram
(SMN vs. MG), all three fitted simultaneously. The higher variability
observed in the MG direct variogram tends to be a common behavior
within this study. This difference cannot be directly attributed to a
difference in the quality of the MG sensors, as these stations are also
much less numerous, with only 23 MG stations for 52 SMN stations over
the chosen event, enhancing the issue of limited number of wet stations
for the MG network.

In addition, if most of the fitted models describe well the experi-
mental variogram, for some times steps, a manual fitting would prob-
ably have led to more appropriate fittings.

4.2.2. Effect of data transformation
The RCK method has been applied to events 1 to 4, both with and

without transformation (Fig. 11). The bias is considerably improved for
two of the four considered events when applying the discussed square-
root transformation (Eq. 31). For the MRTE, a gain is observed for all
events. For the other indicators, the difference is less important and
more variable, for example for the MAD, for which loss and gain are
observed; for the Scatter, the tendency is slightly negative, probably
due to the back-transformation process.

These results are coherent with the conclusions of Erdin et al.
(2012), who reported only “small effects of the transformation” on the
point estimates, but reported a higher reliability of the estimates when
comparing “each gauge measurement against the probability function
of the corresponding cross-validation probabilistic estimate”. Further

Fig. 6. Comparison of total precipitation
over event 1 (04-11-2014 0800 to 06-11-
2014 0400 UTC+1) for (a) IDW(SMN) and
(b) RCK(SMN,MG). The black points re-
present the locations of the considered rain
gauges. The black triangle represents the
radar of Pointe de la Plaine Morte. The gray
back-ground on the bottom-right corner of
(a) results from the absence of data within
the research radius (50 km) of these pixels.

Fig. 7. Performance indicators over event 1
with exclusion of Col du Grand St-Bernard
(GSB) station.

Fig. 8. Performance indicators for the method IDW using SMN data and the RCK method using SMN (primary) and MG (secondary) data over the 3 events without
data for the radar of Pointe de la Plaine Morte.
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improvements in the transformation could be explored, not only on the
power coefficient of the transformation, but also on the back-transfor-
mation process. Based on the obtained results, applying the proposed
transformation is recommended.

4.3. Effect of additional networks

In the results presented in Section 4.1, the MG data have been used
only in the RCK method as secondary variable. Combination of SMN
and MG data as a unique set of data is discussed hereafter. Fig. 12
presents the performance indicators for the IDW, RIDW and RK
methods, each time considering first SMN data only and then com-
bining SMN and MG data, considering them together as one single
variable (Table 6). Results of RCK using SMN data as primary variable
and MG as secondary variable are also presented.

For all indicators except the bias, considering MG data directly with
SMN data as one single variable tended to improve the performance of
the methods as compared to use only SMN data, which can be explained
by the additional local information introduced by the MG stations.
Performances were in some cases even slightly better than for RCK in
which both variables are considered separately. However, and as

expected from the data analysis presented in Section 2 (Study area and
data), this joint use of SMN and MG data resulted in negative biases.
This effect is well visible in particular for events 3 and 4 (Fig. 12),
where values exceeded −0.6 dB corresponding to a negative bias of
about −13%. Consequently, this bias issue suggests to consider both
variables only with methods accounting for this deviation, that means
in the present case the RCK method.

The present study also aimed at providing a preliminary analysis of
integrating stations from surrounding areas. This is justified by the need
for accurate information in terms of precipitation estimates for real-
time hydro-meteorological monitoring and forecasting. Fig. 13 shows
for a time step of event 2 the interpolation results of RCK, using only
SMN and MG data compared to the results obtained with integrating the
data from all surroundings additional networks. With the additional
stations, precipitation estimates are for example increased over the
Aosta region south of the studied basin (see Fig. 13c).

For a more quantitative assessment, Fig. 14 gives the corresponding
performance indicators, including different combinations of primary
and secondary variables for the precipitation interpolation. The addi-
tional data have however not been used for the linear regression
computation nor for the variogram fitting. This was motivated respec-
tively to ensure an optimal radar regression over the studied basin and
to reduce the risk of inconsistencies in the variogram model fitting,
sensitive to discrepancies in even only one or two stations, potentially
affecting the entire interpolation of a given time step.

The results show that adding additional networks has a limited ef-
fect. Bias tends to be the most reactive indicator, even tough differences
are small. For the other indicators, as well as for the total precipitated
volume, differences can be considered as limited, and it is difficult to
define if it is rather a gain or a loss in terms of performance.

For some time steps, some stations of the additional networks re-
ported no precipitation whereas the radar reported heavy precipitation,
suggesting some possible quality issues. For operational purposes, the
quality of these additional networks should be further investigated.

5. Discussion

The performance analysis used in this paper, based on leave-one-out
cross-validation, did not allow a direct comparison with outputs of
previous works, for example with the CombiPrecip product as described
in Sideris et al. (2014a). In fact, the stations used in the cross-validation
evaluation are used in the computation of the product, thus no com-
parison was possible. However, visual analysis of the interpolated
precipitation fields revealed that the spatial patterns were very similar
for a very large fraction of the time steps. Integration of the discussed
interpolated precipitation fields into a hydrological model could allow a
quantitative comparison between the products from a hydrological
point of view. Furthermore, the analysis was carried out over the set of
recent most heavy precipitation events, which were not evenly spread
through all seasons, with events 1 to 4 (period 2014–2017) occurring
from fall to spring and with events A to C (period 2012–2014) only in
summer. This could have an impact on the analysis but should not
modify the general conclusions from the comparison between methods.

The choice of performance indicators can also slightly modify the
results of the analysis. For example, we decided to work with a bias
indicator based on a ratio between estimated and observed values, in-
dicator also used by several other authors (Sideris et al., 2014a;
Goudenhoofdt and Delobbe, 2009). However, alternative versions exist,
based for example on a differential bias (Cecinati et al., 2017b), less
sensitive to small denominators.

Two aspects of the presented precipitation interpolation deserve
further discussion, namely the integration of different rain gauge net-
works and remaining challenges, due mainly to radar visibility.

Regarding the integration of the data from the private MeteoGroup
(MG) raingauges, it is important to point out here that their added value
is probably somewhat underestimated in the presented results. In fact,

Fig. 9. Sample of the variogram and automatically fitted models for the first
four hours of event 3 (January 2016).

Fig. 10. Example of linear model of coregionalization composed of two direct
variograms and one pseudo cross-variogram (bottom left) using SMN as pri-
mary variable and MG as secondary variable (01-05-2015 2200 UTC+1).
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their contribution to the overall interpolation quality is analyzed only
via cross-validation applied to the MeteoSwiss (SMN) stations. This
cross-validation does probably not show a complete picture of the
contribution brought by the MG stations as (i) the MG stations have
been selected to complete the SMN network in areas without SMN
stations and (ii) the MG stations contribute to the final interpolated

precipitation field mostly in their immediate vicinity.
As expected, including the radar data as external drift considerably

improved the precipitation interpolation for all tested methods.
However, any radar data set in a comparably complex area is highly
likely to suffer from several quality issues such as radar beam shielding
by mountain peaks located in close vicinity of the radars. For our case

Fig. 11. Assessment of transforming or not the data when using the RCK(SMN,MG) method.

Fig. 12. Performance indicators over the 4 events, exploring combination of SMN and MG as primary variable for IDW, RIDW and RK methods.

A. Foehn et al. Journal of Hydrology 563 (2018) 1092–1110

1105



study, the Mont Bonvin (2994m asl.), located two kilometers south-east
of the radar of Pointe de la Plaine Morte (2926m asl.), creates such a
blind zone due to radar shielding in south-eastern direction from the
radar location (visible in Fig. 15). In this area, precipitation is highly
likely to be underestimated by the radar. This effect remains visible in
the final estimation method retained here (RCK on the radar residuals
with SMN as primary and MG as secondary variable) and is visible on
Fig. 13. A similar effect can be seen on Fig. 6(b) for a second radar, the

Monte Lema radar (south-east of the case study basin, see Fig. S.2 in
Supp. Mat.). In fact, before the installation of the new radar at Pointe de
la Plaine Morte, such shielding beams were already common over the
studied basin as illustrated in the Supplementary Material (Figs. S.3 and
S.4).

The radar network configuration in terms of installed devices is
supposed to not evolve in the near future. The most promising direc-
tions to further improve precipitation interpolation under the current
configuration are, thus, the following:

(i) Better accounting for radar shielding effects; the replacement by
MeteoSwiss of their radar precipitation estimates product, used for
the present study, by a new version, optimized for the new network
configuration with 5 weather radars, will certainly contribute po-
sitively to this issue. Further investigations could e.g. consist in
developing a raster of radar data quality based on the visibility of
the weather radars or by analyzing the annual radar precipitation
estimates. Such a method to account for radar quality should also
consider temporal variations of the radar network configuration
resulting from temporary inactivity of individual weather radars
(due e.g. to technical failures or scheduled maintenance);

(ii) Improvement of the regression of the radar data on the rain gauge
data, e.g. by including a second coefficient in the linear regression
(Eq. 7), by developing a more local regression method that could
account explicitly for summer convective precipitation or by in-
tegrating other covariates (e.g. topography).

In addition, latest developments in the field of hydrometeor type
classification from radar data (Grazioli et al., 2015), might open up new
perspectives on precipitation-radar data integration for mixed snow and
rain events in the near future, as well as higher quality radar pre-
cipitation estimates during snow fall.

A final point worth mentioning is the potential integration of sec-
ondary rain gauge networks composed of non-heated stations that can
only observe liquid precipitation, such as the Agrometeo network
(Agroscope, 2017) or the IMIS network (SLF, 2017) to further increase
the density of rain observation stations. This is readily possible with the
retained interpolation methodology and could potentially reduce the
precipitation estimation error during rainfall events. However, 75.1
percent of the studied area lies above 1500m asl., where precipitation
occurs regularly in the form of snow between November and March
(Marty, 2008). In addition, with the high density of higher quality data
already available, it is not sure that this would improve the perfor-
mance.

6. Conclusion

This paper proposes a new method named Regression co-kriging for
spatial interpolation of observed precipitation from two non-collocated
rain gauge networks of different quality with radar data. Compared to
the precipitation fields routinely produced in real-time by the Swiss
national meteorological service MeteoSwiss (Sideris et al., 2014a) based
on the observed precipitation data from their SwissMetNet (SMN)
network, the final interpolation method retained here, additionally
integrates data from the network of the private company MeteoGroup
Switzerland AG (MG).

The performance of the interpolated precipitation fields is assessed
for four events over a Swiss Alpine region, the Upper Rhône River basin,
using inverse distance weighting applied directly to the rain gauge
observations as baseline scenario. A series of well-established pre-
cipitation interpolation methods are tested, including methods that use
(i) the radar data as an external drift to compute an overall precipita-
tion trend and (ii) the rain gauge data to form local residuals that are
spatially interpolated and added to the trend. Since the station locations
of the two networks do not coincide, the concept of pseudo cross-var-
iogram is employed to compute the linear model of coregionalization

Table 6
List of methods and data used for analysing the combination of SMN and MG
data as a unique variable. For methods abbreviations, see Table Table 3.

Application Radar Primary variable Secondary variable

IDW(SMN) No SMN –
IDW(SMN&MG) No SMN+MG –
RIDW(SMN) Yes SMN –
RIDW(SMN&MG) Yes SMN+MG –
RK(SMN) Yes SMN –
RK(SMN&MG) Yes SMN+MG –
RCK(SMN,MG) Yes SMN MG

Table 7
Table of variables.

Variable Description

a Regression coefficient for trend computation
b Bin size for variogram computation
C(h) Covariance at distance h
ca Covariance vector between the location of interpolation and the

monitored locations of variable A
Caa Covariance matrix between the residuals of variable A
Cbb Covariance matrix between the residuals of variable B
Cab Cross-covariance matrix between the residuals of variable A to the

residuals of variable B
Cba Cross-covariance matrix between the residuals of variable B to the

residuals of variable A
Cij Covariance between the residuals at locations i and j
d Distance separating two locations
D Spatial domain
g Rain gauge observation
h Distance lag between pairs of locations
K0 Nugget value
K Partial sill
m Trend component
N Number of available rain gauge measurements
p Precipitation depth
r Radar estimate
s Spatial coordinates
s Spatial coordinates vector
s0 Spatial coordinates of interpolation location
t Period of time
T Temporal domain
x x coordinate
y y coordinate
Y Square-root-transformed random variable
Y2 Back-transformed random variable
Z Random variable
α Variogram model range
β Power coefficient for the IDW method
∊ Residual component: observation - trend component
γ h( ) Variogram model
γ h( )a Univariate variogram

γ h( )ab Cross-variogram
∗γ h( )ab Pseudo cross-variogram

λ Interpolation weights
μY Mean of the square-root-transformed kriging prediction
ρ Research radius
σY Standard deviation of the square-root-transformed kriging prediction

σZ
2 Variance of the observations

τ Precipitation intensity threshold for computation of variance to add in
the back-transformation
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Fig. 13. Hourly precipitation interpolated using RCK(SMN,MG) (a) considering all station networks around the basin (see Table 1) together with the SMN stations as
a single (primary) variable (time step: 01-05-2015 2200 UTC+1); (b) as (a) but without surroundings station networks; (c) difference between (a) and (b). On (a)
and (b), the circles represent the primary stations. On (c), the filled circles represent primary stations, the empty circles the secondary stations. The triangle
represents the location of the radar of Pointe de la Plaine Morte.

Fig. 14. Performance indicators comparison for RCK(SMN,MG) including or not the neighbouring networks, and using them as primary, respectively secondary
network.
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used for the co-kriging interpolation.
The completed detailed tests demonstrated that regression co-kri-

ging using the SMN data as primary variable and MG data as secondary
variable to interpolate the local precipitation residuals provides the best
performance for the study area. The method even proved to clearly
outperform the Inverse distance weighting method for historical data
availability scenarios, before the radar network was completed and
with lower rain gauge station density. This result is important for hy-
drological applications where data over many years are required. The
gain introduced by the co-kriging approach is demonstrated by showing
a bias issue when considering both networks jointly linked to a differ-
ence in the networks quality. Regardless of the spatial scale, data
combination must therefore consider with care the quality of the sen-
sors providing the data when elaborating a combination methodology.
The results of the analysis also showed that even with up-to-date
modern weather radar equipments, radar-gauge combination in a
complex topography such as the Swiss Alps requires a high-level
treatment of the data. This is particularly true for reducing the artefacts
due to beam shielding by the topography.

An interesting side-result of this study is the fact that if a single rain
gauge network (SMN stations) is combined with radar data, a kriging-
based residual interpolation does not clearly outperform a simple in-
verse distance weighting of the residuals. This is probably explained, at
least partly, by the relatively low number of rain gauges that report
precipitation for some time steps over the considered domain, which is
often near the limit or even below the minimum required number to
obtain robust variograms (which is particularly limiting for RCK where
two variables need to meet this criterion).

Overall, the presented results underline the importance of analyzing
in detail the evolving data situation to propose robust precipitation
interpolation methods. This not only holds for regions where the rain
gauge and radar network is evolving; any existing network might in-
deed suffer from device failures and ensuing missing data.

In general, the detailed analysis of different rain gauge networks
provided here (including networks of neighbouring regions, networks
of different quality), illustrates that integration of several networks for
operational interpolation purposes is not straightforward. Since the
available meteorological data (quantity and quality) is permanently
increasing, there is ample room for further studies on improving
quantitative precipitation estimates for complex Alpine environments.
Based on our analysis, the most promising research direction is

certainly the pre-processing of the radar data in particular to account
for known beam shielding effects and to take advantage of recent
progress in the field of hydrometeor type classification for radar data.
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