
Chapter 24
Application of an Ensemble Kalman
Filter to A Semi-distributed Hydrological
Flood Forecasting System in Alpine
Catchments

Alain Foehn, Anne Schwob, Damiano Pasetto, Javier García Hernández,
and Giovanni De Cesare

Abstract One of the key success factors for hydrological forecasts is initial con-
ditions that represent well the conditions of the simulated basin at the beginning of
the forecast. Real-time Data Assimilation (DA) has been shown to allow improving
these initial conditions. In this article, two DA approaches are compared with the
reference scenario working without DA (Control). In both approaches, discharge
data at gauging stations are assimilated. In the first approach, a volume-based update
(VBU) compares the simulated and observed volumes over the past 24 h before the
start of a forecast to compute a correction factor used to update the initial soil water
saturation in the upstream part of the semi-distributed hydrological model. In the
second approach, an ensemble Kalman filter (EnKF) is implemented to account for
the uncertainty in initial conditions, precipitation, temperature and discharge data.
The comparison is carried out over two sub-basins of the Upper Rhone River basin
upstream of Lake Geneva, in Switzerland, where the MINERVE flood forecasting
and management system is implemented. Results differ over the two studied basins.
In one basin, the two DA simulations perform better than the Control simulation,
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with the EnKF simulation providing the best forecasting performance. In the sec-
ond basin, where the Control simulation performs best, possible challenges with
hydropower-based discharges are highlighted.

Keywords Data assimilation · Hydrological modelling · Data uncertainty · Data
perturbation

24.1 Introduction

Severe flooding events in recent decades have increased the need for reliable fore-
casting systems in Alpine catchments. Following the major flood of October 2000 in
the Canton of Valais (Switzerland), an operational forecasting system (MINERVE)
has been set up in 2013 and provides a tool for decision-making tasks [6, 7, 9].

Despite efforts on the calibration of the model, hydrological forecasts are subject
to a number of uncertainties [13]. First, meteorological inputs suffer from uncer-
tainties both on the measurements and the meteorological forecast. This is true for
the precipitation, but also for the temperature that can be difficult to estimate accu-
rately in alpine catchments. Second, the model represents a simplification of the real
system which implies errors in the simulated discharges. Third, the discharge mea-
surements also suffer from uncertainties. All these uncertainties must be considered
when analyzing the performances of a hydrological forecasting system.

Data assimilation (DA) techniques are mathematical tools developed to correct
the model results using available system observations and taking into account explic-
itly the different sources of uncertainty. One of the first developed techniques was
the Kalman filter (KF) [10], largely used for linear models. To allow working with
non-linear models, alternative methods have been developed. One of these variants is
the ensemble Kalman filter (EnKF), a Monte Carlo approach of the KF, performing
an ensemble of model runs [4]. Weerts et al. [14] compared the EnKF with Particle
filtering (another DA approach) and showed that EnKF was more robust and out-
performed the two other analyzed filters. In the following study, an implementation
of the EnKF with updating of state variables is explored using the SOCONT and
GSM semi-distributed conceptual models. The performance gain is evaluated over
two flood events concerning two different rivers located within the Upper Rhone
River basin in Switzerland.

24.2 Materials and Methods

24.2.1 Watersheds and Data

The analysis concerns the streamflow simulation at the outlet of the Aigle and
Reckingen sub-catchments of the Upper Rhone River basin. In each sub-catchment,
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a period of high flow is analyzed over which weather radar data is available. The
evaluated high flow periods occurred in 2012 in Reckingen and in 2015 in Aigle.
Corresponding characteristics of the sub-catchments are given in Table 24.1.

Both rivers are equipped with a small run-of-river hydropower plant. The one in
the Rhone (Reckingen basin) has an equipped discharge of 5.7 m3/s (yearly average
discharge in 2012: 10.6 m3/s). The equipped discharge over the Grande-Eau was
2.5 m3/s until 2015 and is 6.5 m3/s since April 2016 (yearly average discharge in
2015: 4.02 m3/s). In addition, the Grande-Eau catchment receives water diverted
from the Lac d’Arnon, a reservoir located in a nearby catchment with a capacity of
11 million m3. When the natural discharge in the Grande-Eau River is below the
installed capacity of the two successive run-of-river hydropower plants, the water
from the Lac d’Arnon is turbined at a third more upstream hydropower plant with a
capacity of 1.75 m3/s. The operating data of the scheme were not available for the
present study.

Precipitation data are taken from a spatial product of precipitation following the
regression co-kriging approach presented in [5], in which radar data are combined
with two networks of ground station data into a 1× 1 km gridded data with a one hour
temporal resolution. Temperature data are interpolated from the values observed at
the meteorological stations with a constant vertical lapse rate of −5.5 °C/1000 m.

In order to evaluate the performance of the data assimilation method, observed
data of precipitation and temperature are used for both the assimilation and forecast
simulations; i.e. no forecast data are considered in the present analysis. This ismainly
due to the limited temporal coverage of historical weather forecast data. Furthermore,
working with observed values can be seen as introducing less uncertainty as weather
forecasts. Nevertheless, it must be mentioned that the Aigle and Reckingen basins
are neither well covered by the SwissMetNet automatic monitoring network of the
Swiss Federal Office of Meteorology and Climatology (MeteoSwisss) nor by the
Swiss weather radar network, due to the complex topography of the Upper Rhone
River basin. Therefore, the radar data are locally subject to possible underestimations.

To account for these underestimations, the spatial product of precipitation was
multiplied by a correction factor over both basins. For Reckingen, a factor of 1.6 has
been applied. This value is probably too low according to the difference between
simulated and observed flow, but higher values were not investigated in this study.
For the Grande-Eau, spatially varying values between 1.15 and 1.4 were considered.

Table 24.1 Main characteristics of the catchments

Station River Area
[km2]

Catchment
mean
elevation [m
a.s.l.]

Glaciation
[%]

Hourly
peak
flow
[m3/s]

Return
period of
the
studied
event
[years]

Reckingen Rhone 214 2305 11.8 154.8 36

Aigle Grande-Eau 132 1562 0.8 60.1 10
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Variations in the factor are justified by the varying visibility of the weather radar
data over the basin, with the Wildhorn peak (3250 m a.s.l.) considerably reducing
the visibility over the basin of the closest weather radar (at Pointe de la PlaineMorte),
located at only 2926 m a.s.l.

24.2.2 GSM-SOCONT Model

Simulations are performedwith the rainfall-runoff semi-distributed conceptualGSM-
SOCONT (Glacier and SnowMelt—Soil CONTribution) model [8, 12], illustrated
in Fig. 24.1. The main parameters of the model are given in Table 24.2.

Fig. 24.1 Schematic of the SOCONT (left) and GSM (right) rainfall-runoff models [8]

Table 24.2 Main parameters of models SOCONT and GSM models

Parameters Units Model SOCONT

Asn mm/d/°C Reference degree-day snowmelt coefficient

HGR3Max m Maximum height of infiltration reservoir

KGR3 1/s Release coefficient of infiltration reservoir

Kr m1/3/s Strickler coefficient of surface runoff

Variable Units Model GSM

Asn mm/d/°C Reference degree-day snowmelt coefficient

Agl mm/d/°C Reference degree-day glacier melt coefficient

Ksn 1/d Release coefficient of snow melt reservoir

Kgl 1/d Release coefficient of glacier melt reservoir
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For the semi-distributed model, the studied catchment is divided into elevation
bands with an elevation range not exceeding 500 m. This allows accounting for
the vertical evolution of temperature. The GSM model is used for glacial elevation
bands and the SOCONT model for non-glacial elevation bands. For both models,
the snowmelt rate is controlled by the snowmelt coefficient. For the GSM model,
when the surface is free of snow, glacial melt is considered based on the glacier melt
coefficient and the temperature. For the SOCONT model, the generated discharge
at the outlet of the basin is controlled by the absorption capacity of the soil, the
release coefficient of the infiltration reservoir as well as the roughness of the surface
runoff surface. The model has been calibrated using the same spatial products of
precipitation and temperature used for the assimilation.

24.2.3 Data Assimilation Techniques

Two DA techniques are explored in this work to improve the values of the system
state variables at the beginning of each forecast. The first method is based only on a
volume comparison between simulated and observed discharges over the past 24 h.
This method has been used operationally for three years in the MINERVE system.
The second method consists in an ensemble Kalman filter, where an ensemble of
possiblemodel trajectories is correctedby assimilating the current available discharge
observation.

The objective of the data assimilation is reducing the discrepancy between the
simulated state variables and the actual state of the system to improve the forecast
performance of themodel. To achieve this, the state variables of themodel are updated
using the available discharge observations.

In the SOCONT model, the state variables for which initial conditions need to be
updated are thewater level in the soil reservoir (HGR3), the surface runoff water level
(Hr) and the Snow water equivalent (SWE) which are evaluated at each spatial node
of the model. Furthermore, the snow water equivalent (SWE) as well as the water
level in the glacial melt reservoir and the snow melt reservoir from the GSM model
could be updated but this was not explored in the study. In the following, xt indicates
the system state vector of dimension nstate = 3 × nnodes, which elements are the
SOCONT state variables HGR3, Hr and SWE in all modeled nodes. The temporal
evolution of the state vector obtained with GSM-SOCONT is formally represented
by the following dynamical model:

xt+1 = f
(
xt , ut ,w t

)
(24.1)

where the function f is the set of equations linking the state of the system from time
t to t + 1, ui

t represents the vector of model inputs (here, spatial maps of temperature
and precipitation) and wt is the possible occurrence of system noise (not directly
considered in this analysis).
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The assimilation procedure is performed using real measurements of the system
given by discharge data based on water level observations at the outlet of the water-
shed, provided by the Swiss Federal Office for the Environment (FOEN). Therefore,
the initial discharge of the (kinematic wave) river reaches (Qini) of the model is
also considered in the state vector. Observations are indicated with the vector yt of
dimension nobs (here nobs = 1, since the observation is the discharge at time t at a
unique gauging station). The link between the state variables xt and the observations,
yt , is provided by the following observation operator:

yt = Hxt + vt (24.2)

whereH is a projection matrix (dimension nobs× nstate), and vt represents possible
measurement errors (see Sect. 24.3.1.3). The matrixH is constructed with a value of
1 in correspondence of the state variable being observed, and 0 elsewhere [3].

In the following, the three assimilation procedures considered to produce the
forecasts of discharge are described.

24.2.3.1 Control Simulation (Control)

The reference scenario is computed by running the model (Eq. 24.1) without any
perturbation of input data (i.e., ut corresponds to the nominal values of precipitation
and temperature) and without considering the discharge measurements during the
simulation (no data assimilation). This simulation corresponds to what is frequently
called the open-loop scenario.

24.2.3.2 Volume-Based Update (VBU)

The first data assimilation approach is the volume-based update (VBU), which is
based on the comparison between the volumes of the observed and the simulated
discharges. The only updated state variable is the soil water content (HGR3) of the
SOCONT models. The value of the corresponding HGR3 at the start of the VBU
simulation (24 h before the beginning of the hydrological forecast) is iteratively
changed (up to ten iterations) so that the simulated volumes throughout the simulation
are as close as possible to the observed ones. The implemented approach limits the
saturation at the start of the VBU simulation to 75% of the maximum water content
in the soil, in order to avoid a too much reactive result. Note that the VBU simulation
does not take into consideration theuncertainties in the inputs,model, or observations.
The update considers all the discharge observations collected during the 24 h before
the forecast. Similarly to the control simulation, VBU provides as output only one
model trajectory.
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24.2.3.3 Ensemble Kalman Filter (EnKF)

The second data assimilation approach is an implementation of the ensemble Kalman
filter (EnKF), which better allows the update of state variables taking into considera-
tionmodel andmeasurements uncertainties. TheEnKF is an adaptation of theKalman
filter in which the covariance matrix is replaced by the sample covariance computed
from an ensemble of possible state vectors. The EnKF is based on the sequential rep-
etition of two steps: the prediction step and the analysis (or assimilation) step. In the
prediction step the different members of the ensemble are independently advanced in
time by running themodel (Eq. 24.1) applying different random samples of uncertain
forcing terms [1, 13]:

xi,pt+1 = f
(
xi,at , ui

t ,w t
)
, i = 1, . . . , nens (24.3)

where xi,pt+1 is the i
th predicted ensemble state at time t + 1, xi,at is the ith assimilated

ensemble state at time t,ui
t represents the possible occurrence of model and/or input

uncertainties (here, a perturbation of temperature and precipitation, see Sect. 24.3.1).
The index “p” indicates the prediction and the index “a” the analysis.

In the analysis step, the predicted state variables xi,pt+1 are updated using the newly
available observation, yt+1. Thenens ensemblemembers are combined into thenstate
× nens model state matrix, that is:

X p
t+1 =

(
x1,pt+1, x

2,p
t+1, . . . , x

nens,p
t+1

)
(24.4)

where nstate is the number of state variables and nens is the number of ensemble
members. The ensemble mean is given by:

x̄ p
t+1 = 1

nens

∑nens

i=1
xi,pt+1 (24.5)

which is used to compute the model error for each ensemble member i:

E p
t+1 =

(
x1,pt+1 − x̄ p

t+1, x
2,p
t+1 − x̄ p

t+1, . . . , x
nens,p
t+1 − x̄ p

t+1

)
(24.6)

where E p
t+1 is the ensemble anomaly.

The ensemble model covariance matrix (nstate × nstate) can then be defined as
follows:

P p
t+1 = 1

N − 1
E p

t+1E
pT

t+1 (24.7)

In order for the EnKF to maintain sufficient spread in the ensemble and prevent
filter divergence [2], observations are perturbed in accordance with the measurement
error (Eq. 24.2) to create a nobs × nens vector of observations Y t+1. The analysis
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equation is then given by the EnKF update, which is optimal in the case of errors
with a Gaussian distribution:

Xa
t+1 = X p

t+1 + Kt+1
(
Y t+1 − Ht+1X

p
t+1

)
(24.8)

where the matrix Kt+1 (nstate × nobs) is called the Kalman gain:

Kt+1 = P p
t+1H

T
t+1

(
Ht+1P

p
t+1H

T
t+1 + Rt+1

)−1
(24.9)

and where Rt+1 is the nobs × nobs observation error covariance matrix.
Note that each ensemble member is updated separately. Moreover, the forecast

computed after an EnKF update consists of an ensemble of model trajectories, from
which it is possible to quantify the uncertainty associated to the forecast. In the
EnKF implementation realized in this study, a new assimilation is performed every
two hours. Furthermore, the constraint of maximum 75% of soil saturation used
in the VBU is not applied in the implementation of the EnKF. This choice was
motivated by the higher sophistication of the EnKF approach using the ensemble
approach. Nevertheless, EnKF can also result in high oversaturation in case of large
differences between simulated and observed discharges.

24.3 Experimental Set-Up

24.3.1 Uncertainties in Input and Output

Model uncertainties are quantified by the ensemble Kalman filter through the empiri-
cal probabilistic distribution of the ensemble members. Input forcing data (precipita-
tion and temperature in this study) are perturbed to provide each member a different
input and thereby ensure spread in the ensemble. Members are initialized with a
perturbation of the state variables of the model.

24.3.1.1 Precipitation Uncertainty

Precipitation is perturbed following a lognormal distribution with a temporal cor-
relation. During the prediction step of EnKF, the nominal value of precipitation is
multiplied by a coefficient as follows:

Pi
t = Pt × eit (24.10a)

with:

eit = exp
(
zit

) ∼ logN
(
me, σ

2
e

)
(24.10b)
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where Pt is the measured precipitation at time t, eit is the multiplier coefficient for
the ith member at time t and Pi

t is the perturbed precipitation for the ith member at
time t.

At time t = 0, zio is sampled from:

zi0 ∼ N
(
0, θ2

)
(24.11a)

with a mean equal to 0 so that the median of exp
(
zi0

)
equals 1 and the standard

deviation θ fixed to 0.3 for Grande-Eau and 0.5 for Reckingen (0.5 corresponds to
perturbation factors eit with quantiles 5, 25, 50, 75 and 95% of respectively 0.44,
0.71, 1.00, 1,40 and 2.18).

In order to ensure a temporal correlation of the perturbation for a given member
at time t > 0, the time evolution of precipitation errors is simulated as follows:

zit = ρzit−1 +
√(

1 − ρ2
)
ωi
t (24.11b)

ωi
t ∼ N

(
0, θ2

)
(24.11c)

ρ = 1 − �T

τ
(24.11d)

where ωi
t is the sample white noise, ρ is the temporal persistence parameter, �T is

the simulation time step and τ the decorrelation time step. In the present study, �T
is one hour and τ is fixed to 24 h (following [3]).

In addition to the temporal correlation, the spatial correlation of the perturbation
is considered by modifying for a given member all pixels with the same perturbation.

24.3.1.2 Temperature Uncertainty

Temperature is perturbed using an additive term following a normal distribution:

T i
t = Tt + sit (24.12a)

where Tt is the measured temperature at time t, sit is the additive coefficient for the
ith member at time t and T i

t is the perturbed temperature for the ith member at time t.
At time t = 0, the perturbation of the ith member is given by:

si0 ∼ N
(
0, σ 2

s

)
(24.12b)

where the standard deviation σs is fixed to 2 °C.
At time t > 0, a temporal correlation of the perturbation is considered following

Eq. (24.11b) to (24.11d) using the normal distribution given in Eq. 24.12b and a
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decorrelation time fixed to 12 h. Similarly to the precipitation, a spatially constant
correction is considered for each member.

24.3.1.3 Measurement Uncertainty

Errors in the streamflow measurements can result from both errors in the level mea-
surement and uncertainties in the rating curve used to transform water level into
discharge data. The perturbed discharges are computed with an additive term as
following:

yit = yt + β i
t − γ (24.13a)

β i
t ∼ N

(
0, σ 2

β

)
(24.13b)

σβ = εy × yt (24.13c)

where εy is a hyper-parameter allowing to define the perturbation proportionally to
the discharge values and γ corresponds to a correction for possible external discharge
contributions to the basin, like in the case of the Grande-Eau (1.75 m3/s from the
Lac d’Arnon located outside of the basin). The γ correction is randomly considered
by using a uniform random variable (i.e. discharge values for 50% of the members
are reduced by the defined external discharge, 50% are not modified).

24.3.1.4 Members Initialization

Before the first assimilation, initial conditions of the state variables are also perturbed.
The level in the infiltration reservoir, the level of surface runoff and the snow water
equivalent height of the SOCONT models are perturbed using a normal distribution
with mean 0 and a standard deviation corresponding to 40% of the original state
variable value.

The original initial values are computedwith a one year warm-up simulation using
the same precipitation and temperature data as the one used for the data assimilation.

24.3.2 Performance Evaluation

Two precipitation events are analyzed and the VBU and EnKF are used to assimi-
late streamflow measurements every 2 h. After each assimilation, a new streamflow
forecast of 3 days is produced using observed precipitation and temperature. The per-
formances of the control scenario, VBU and EnKF are evaluated by computing the
root mean squared error (RMSE) between the forecasted and measured streamflow
values at different lead times L (each hour) during the forecast as followed:
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RMSEL =

√√√√
∑n

j=1

{
Q f

L , j − Qobs
L , j

}2

n
(24.12)

where n is the number of forecasts produced during the single precipitation event.

24.3.3 Code Implementation

The methodology has been implemented in the R language and environment [11], in
particular with the packages parallel for parallel computation [11], ggplot2 for the
plots [15] and httr for the data acquisition [16].

24.4 Results and Discussion

Simulations have been run for the two events presented in Table 24.1.
Figure 24.2 shows the forecasted flow about 24 h before the peak flow for the

high flow event at station Reckingen (Rhone River). For the EnKF approach, lines
corresponding to all members as well as the median (red) and the mean (brown)
are shown. Over the assimilation period, the difference between the VBU (green
line) and the Control (blue line) are well visible, with the VBU line being closer
to the observations. The red line, existing only over the two hours preceding the
assimilation time (corresponding to the prediction phase of the members) is close
to the observed discharge value of the assimilation time (vertical dashed line). The
daily variation due to snow and ice melt is well visible in the observed discharge.

Fig. 24.2 Forecasted discharges for the three different approaches at the Reckingen station on the
Rhone River. The dashed line corresponds to 2012-07-01T10 + 01:00
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Fig. 24.3 RMSE values obtained for the three approaches for the high flow event at the Reckingen
station on the Rhone River. The n value indicates the number of runs considered in the computation
of the RMSE value of each temporal horizon.

The simulated discharge, in particular for the Control simulation, is well below
the observed discharge, even though the precipitation has been multiplied by 1.6.
This confirms the need of modifying the precipitation input to well reproduce the
event and highlights the importance of representative input data to the model.

The RMSE values obtained during the forecast for the event are presented in
Fig. 24.3. The EnKF provides the best performance, followed by the VBU approach.
The difference between the two DA approaches is not high, except over the few first
forecast hours, where the EnKF results in a lower error.

It must be mentioned that the considerable gain of the two data assimilation
approaches (VBU and EnKF) is here partially an artefact. In fact, the difference
between simulated and observed discharges probably rather comes, at least partially,
from an underestimation in the snow and ice melt, variables which are currently not
updated in the presented system. To compensate this underestimation, the VBU and
EnKF approaches increase the soil water content of the non-glacial part of the basin
to increase the base flow. This results during the event in a much higher peak flow as
compared to the Control simulation. The hypothesis of an overcompensation of the
soil reservoir is also supported by the very rapid hydrological answer of the system
at the begging of the event, suggesting a highly saturated soil. This analysis supports
the need to improve the implemented EnKF approach to update also the initial level
of glacial and ice melt reservoirs. Furthermore, regarding the difference between
EnKF and VBU, it probably results from the constraint used in VBU to limit the soil
water storage to 75% of its maximum capacity, constraint not applied to EnKF.

Over the second studied high flow event, concerning theGrande-Eau basin, results
are quite different. During the event, both the VBU and the EnKF approaches per-
form similar to the Control simulation (Fig. 24.4). However, when looking at the
performance over the entire event (i.e. including the forecasts generated before the
beginning of the event), the Control simulation performs best (Fig. 24.5).
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Fig. 24.4 Forecasted discharges for the three different approaches at the Aigle station on the
Grande-Eau River. The dashed line corresponds to 2015-05-02T06 + 01:00

Fig. 24.5 RMSEvalues obtained for the three approaches for the high flow event at theAigle station
on the Grande-Eau River. The n value indicates the number of runs considered in the computation
of the RMSE value of each temporal horizon

The better performance of the Control simulation results from the fact that when
applying the data assimilation methods on the base flow, both methods fail in well
forecasting the observed discharge byhighly overestimating the discharge (Fig. 24.6).
This low performance of both DA approaches is here mainly linked to the external
water (from the Lac d’Arnon) turbined in the upstream part of the basin. Exclusively
operated during low flows, the relative impact on the base flow is considerable. Over
the studied event, the external input results in an increase of the observed discharge
from 6.2 m3/s to 9.8 m3/s, which represents an artificial increase of the natural
discharge of 58%.

For the VBU approach, the external water discharge constantly causes an increase
in the soil water content to try to reproduce the observed discharge. The longer the
operation of the turbine over the last 24 h, the more VBU will tend to increase the
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Fig. 24.6 Forecasted discharges for the three different approaches at the Aigle station on the
Grande-Eau River. The dashed line corresponds to 2015-04-30T00 + 01:00

soil saturation. For the EnKF, the behavior slightly differs, mostly due to the consid-
eration of the external input in the approach, by modifying the observed discharges
with the turbine capacity for 50% of the members. When the observed discharge
includes external turbined water, an overestimation is also observed in the forecasted
discharge, even though it tends to be less extreme than the one ofVBU (see Fig. 24.6).
On the contrary, when the turbine is not operating (i.e. the observed discharge cor-
responds to the natural discharge), the scheme tends to underestimate the observed
discharge in the forecast, due to the discharge correction.

Results show that the implemented solution with a modification of the observed
discharge for 50% of the members is not efficient. This issue needs further investiga-
tion to come to a robust system. Ideally, data from the turbine injecting the external
water would be integrated directly in the model at the location of the hydropower
plant to reduce this high source of uncertainty. Thereby, the performance would cer-
tainly be higher. In fact, tests have demonstrated that the EnKF approach can perform
very well when applied over the hours preceding the studied event when the observed
discharge corresponds to the natural discharge.

In addition, it must be noted that whereas the capacity of the turbine injecting
the external water is fixed to 1.75 m3/s, the observed discharge variations (increase
and decrease) before the studied event vary between 3 and 4 m3/s for a base flow of
about 6 m3/s. Interestingly, an analysis of historical discharge data has revealed that
for base flow of 2 m3/s, the variations rather tend to be in the range of 1 m3/s for
the same turbine operation. This will need to be better analyzed and will have to be
considered for future development of the above presented EnKF methodology.

Furthermore, correct base flow estimates are important to achieve good results.
If the model is not able to well reproduce the base flow, the correction of the EnKF
might result in important over- or underestimation of the high flow events as a result
of an inadequate correction of the soil water content. Therefore, implementing the
presentedmethodology should only be considered on basinswith a robust calibration.
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24.5 Conclusions

Two data assimilation methods are explored in this study to improve the initial
conditions of the model state variables with the objective of improving the quality of
hydrological forecasts. They are comparedwith a reference scenarioworkingwithout
data assimilation (Control). The first method updates the soil saturation based on a
volume-based update (VBU) over the 24 h preceding the forecast. The secondmethod
is an implementation of the ensemble Kalman filter (EnKF). The semi-distributed
conceptual hydrological model GSM-SOCONT is used for the simulations.

The methods are applied to two high flow events over two different catchments
of the Upper Rhone River basin in Switzerland. Spatially interpolated precipitation
data in combination with temperature data observed at stations are used both for the
assimilation and forecast periods. The performance is evaluated with the Root Mean
Square Error at hourly forecasting horizon up to 72 h.

The results differ over the two basins. Over one basin, the two data assimila-
tion methods provide better results than the Control, with EnKF outperforming the
VBU approach. However, since the methodology is applied to a glacial basin where
the glacial and snow melt reservoirs are not updated in the assimilation, the better
performance might result from an overcompensation of the soil water content in the
non-glacial part of the basin. Over the second basin, the results are completely differ-
ent. The best performance is obtained with the Control simulation, thanks to a good
reproduction of the observed discharge by the simulation without any correction.
The low performance of the data assimilation approaches is explained by the impact
of the water injection through a turbine from a reservoir external to the basin, con-
siderably impacting the observed base flow and affecting the data assimilation. The
effective turbine operation not being available to the system, the data assimilation
techniques fail to adequately forecast the flow during the precipitation event.
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